Normalized defining polynomial
\( x^{22} - x^{21} - 15 x^{20} + 49 x^{19} + 44 x^{18} - 485 x^{17} + 631 x^{16} + 1475 x^{15} - 5443 x^{14} + 3138 x^{13} + 10542 x^{12} - 20731 x^{11} + 9385 x^{10} - 1329 x^{9} + 26060 x^{8} - 12671 x^{7} - 46031 x^{6} + 81808 x^{5} - 90460 x^{4} + 26591 x^{3} + 21718 x^{2} - 4276 x - 289 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5} a^{19} - \frac{2}{5} a^{18} - \frac{1}{5} a^{17} - \frac{2}{5} a^{16} - \frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{20} + \frac{1}{5} a^{17} + \frac{1}{5} a^{16} - \frac{1}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{912297947110386761588395623873600423299401585164112355} a^{21} + \frac{90710748969699063155200593908017973220920263291193157}{912297947110386761588395623873600423299401585164112355} a^{20} - \frac{76679573336704876773755474687952974379725608095980596}{912297947110386761588395623873600423299401585164112355} a^{19} - \frac{33834077226201298526788840607296816723720142536649742}{912297947110386761588395623873600423299401585164112355} a^{18} + \frac{158174690960863444076996799089240063769237326045917124}{912297947110386761588395623873600423299401585164112355} a^{17} - \frac{192587939276981381560424506351840199366803607279912147}{912297947110386761588395623873600423299401585164112355} a^{16} + \frac{81197758108688865369464356415181016388780854108501884}{912297947110386761588395623873600423299401585164112355} a^{15} - \frac{13309297661447242868671361117881825142080859514400266}{912297947110386761588395623873600423299401585164112355} a^{14} - \frac{19093067259752714528224271462883472872699657829840865}{182459589422077352317679124774720084659880317032822471} a^{13} - \frac{236188177432934864363975531095477600367132471573818548}{912297947110386761588395623873600423299401585164112355} a^{12} + \frac{15931980212296060330803310472287986402460144915294841}{912297947110386761588395623873600423299401585164112355} a^{11} + \frac{406508086032646137972201009424503260568624335355061554}{912297947110386761588395623873600423299401585164112355} a^{10} - \frac{156162165863910117786187119780123582155979562101956771}{912297947110386761588395623873600423299401585164112355} a^{9} - \frac{206945301364710326588683509472720110239993868266746991}{912297947110386761588395623873600423299401585164112355} a^{8} + \frac{450697818788855773553709086600430232144856829206352591}{912297947110386761588395623873600423299401585164112355} a^{7} - \frac{268745086073384282396814895189799158783376731936614988}{912297947110386761588395623873600423299401585164112355} a^{6} - \frac{303656478422870016544289713024203410852907248037038967}{912297947110386761588395623873600423299401585164112355} a^{5} - \frac{341484783861486135174925853291762771811703523280225626}{912297947110386761588395623873600423299401585164112355} a^{4} - \frac{21649805789215589039853142904372867278095996461918724}{182459589422077352317679124774720084659880317032822471} a^{3} + \frac{292230225494540074466668373256025766116683931037139414}{912297947110386761588395623873600423299401585164112355} a^{2} - \frac{303106692948269963669763564920729750255986838116072449}{912297947110386761588395623873600423299401585164112355} a - \frac{367174924264402581824080257572497352630653837414718564}{912297947110386761588395623873600423299401585164112355}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20883851271.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||