Normalized defining polynomial
\( x^{22} - 2 x^{21} - 21 x^{20} + 53 x^{19} - 10 x^{18} + 194 x^{17} - 407 x^{16} - 1527 x^{15} + 6220 x^{14} - 4654 x^{13} - 629 x^{12} - 17002 x^{11} + 27165 x^{10} + 61220 x^{9} - 186927 x^{8} + 181221 x^{7} - 68565 x^{6} - 17301 x^{5} + 21983 x^{4} + 305 x^{3} - 3623 x^{2} + 368 x + 89 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} - \frac{2}{5} a^{16} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{19} + \frac{2}{5} a^{17} - \frac{2}{5} a^{16} - \frac{2}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{85} a^{20} + \frac{1}{85} a^{19} - \frac{1}{17} a^{18} - \frac{1}{5} a^{17} + \frac{27}{85} a^{16} - \frac{14}{85} a^{15} - \frac{13}{85} a^{14} + \frac{4}{17} a^{13} + \frac{5}{17} a^{12} - \frac{7}{17} a^{11} - \frac{7}{17} a^{10} - \frac{7}{17} a^{9} + \frac{1}{5} a^{8} + \frac{7}{85} a^{7} + \frac{26}{85} a^{6} + \frac{1}{5} a^{5} + \frac{28}{85} a^{4} + \frac{4}{85} a^{3} + \frac{21}{85} a^{2} - \frac{22}{85} a + \frac{1}{85}$, $\frac{1}{35095522200121015135944678586123987857723560963959375} a^{21} + \frac{167274430234505627861069051924550053351040910082701}{35095522200121015135944678586123987857723560963959375} a^{20} + \frac{2061087580427642102780541046677996779550074613742032}{35095522200121015135944678586123987857723560963959375} a^{19} + \frac{2440714967398493051604992180123852983585828985731299}{35095522200121015135944678586123987857723560963959375} a^{18} - \frac{12972859648564378947856248791110373542989831307026313}{35095522200121015135944678586123987857723560963959375} a^{17} - \frac{49325647517916150043775757618022160313858954033608}{163234986977307047143928737609879013291737492855625} a^{16} - \frac{2908968300788403507604921763907932887545717481918442}{35095522200121015135944678586123987857723560963959375} a^{15} - \frac{817259509979724808403078887716251166031351031390934}{2064442482360059713879098740360234579866091821409375} a^{14} - \frac{3533072496736585180343531480127327073291871389503264}{35095522200121015135944678586123987857723560963959375} a^{13} - \frac{2444587240488622738704704783688053981005592420884121}{35095522200121015135944678586123987857723560963959375} a^{12} - \frac{14136312329555206822173975598771591220343236336775317}{35095522200121015135944678586123987857723560963959375} a^{11} - \frac{3199882384282192756083825353468501939897751858413228}{35095522200121015135944678586123987857723560963959375} a^{10} - \frac{10957334748899693180454234262379438738819463501814994}{35095522200121015135944678586123987857723560963959375} a^{9} + \frac{13909747479326300177097350177362585533101642568408688}{35095522200121015135944678586123987857723560963959375} a^{8} + \frac{4036649909324074032000983084898144601798258125535487}{35095522200121015135944678586123987857723560963959375} a^{7} + \frac{6331936824016218169285914601264604516826533152121957}{35095522200121015135944678586123987857723560963959375} a^{6} + \frac{14852632545451826694725530650258651935286894043595581}{35095522200121015135944678586123987857723560963959375} a^{5} - \frac{550828146615791537277055486757732916095590079588749}{2064442482360059713879098740360234579866091821409375} a^{4} + \frac{17047813184796783215958785473290414901138508450929809}{35095522200121015135944678586123987857723560963959375} a^{3} + \frac{8861948164030530572784817596287537654963101597366532}{35095522200121015135944678586123987857723560963959375} a^{2} + \frac{9729397504163178745400239766761904006237951180670498}{35095522200121015135944678586123987857723560963959375} a - \frac{11433015395668252054933918177782325641512998095345413}{35095522200121015135944678586123987857723560963959375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30955874600.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||