Normalized defining polynomial
\( x^{22} + 11 x^{20} + 143 x^{18} - 44 x^{17} - 1067 x^{16} + 792 x^{15} - 11550 x^{14} + 11660 x^{13} - 57376 x^{12} + 147484 x^{11} + 215754 x^{10} - 1960464 x^{9} + 4921708 x^{8} + 200112 x^{7} - 15334407 x^{6} + 13689368 x^{5} + 4954521 x^{4} - 8447692 x^{3} + 1538603 x^{2} + 156376 x - 37649 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1901122355173875840973860678585777171464192=2^{30}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{4}$, $\frac{1}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{21} + \frac{95093184823624046433961329342774210015247284540884093014395011404240182072}{1890963617208408952762480110984397443584180401446782665560720040886413480085} a^{20} + \frac{468820743460557312171098717724210939344236941191700627020607719325705344551}{1890963617208408952762480110984397443584180401446782665560720040886413480085} a^{19} - \frac{69024652552723406661109235656443352839305505246199378980085816590804294181}{1890963617208408952762480110984397443584180401446782665560720040886413480085} a^{18} + \frac{87314159287252246953539985385023332969371337858046809376933541151563093439}{756385446883363581104992044393758977433672160578713066224288016354565392034} a^{17} - \frac{216611189062851541005144035393675132070995118074269396229976062585115828369}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{16} - \frac{839318025587331793101847301279597797433547412043711794833212449459534547883}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{15} + \frac{76336510361459117022814495950035892425469447262619009790077767585861913363}{756385446883363581104992044393758977433672160578713066224288016354565392034} a^{14} - \frac{38934214490121754192454778255995944494585995903297788291480885852981432999}{378192723441681790552496022196879488716836080289356533112144008177282696017} a^{13} - \frac{12709633622534257126452919434091907971467818647261134102793014663612496947}{378192723441681790552496022196879488716836080289356533112144008177282696017} a^{12} - \frac{88878038141195172301046395591838060361751205152453753616406338915587224981}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{11} + \frac{114572178680723098433405148262408838120578907803883197435456990937876783377}{756385446883363581104992044393758977433672160578713066224288016354565392034} a^{10} + \frac{29040811816815202559931511833646596066252029123528865991659433000807199592}{1890963617208408952762480110984397443584180401446782665560720040886413480085} a^{9} + \frac{33576248022985910008951893667445429482218419071890411318442389212738680041}{1890963617208408952762480110984397443584180401446782665560720040886413480085} a^{8} + \frac{775561082129099144099525342415490437743955775836356228253801451076523652031}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{7} + \frac{1782392446823476763546551979047076052953945516146869429222548725756412371721}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{6} - \frac{556190505794864644488701118273391743182236881764625508719149990634627959313}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{5} + \frac{698498843738833037205623947749548526640474641671592969545837537405142512243}{1890963617208408952762480110984397443584180401446782665560720040886413480085} a^{4} - \frac{321455703107602958419151849029100726778359995974068392942852028456924111887}{756385446883363581104992044393758977433672160578713066224288016354565392034} a^{3} - \frac{1158022942959982167081091020147876225708327461835700417374112868889112648387}{3781927234416817905524960221968794887168360802893565331121440081772826960170} a^{2} + \frac{132580574808177614722245942179143176222225127176934553440609864276283608743}{756385446883363581104992044393758977433672160578713066224288016354565392034} a - \frac{1746760403465341383979491580213922133432555447695828619081842626773108742969}{3781927234416817905524960221968794887168360802893565331121440081772826960170}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41936443284900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||