Normalized defining polynomial
\( x^{22} - 66 x^{19} - 22 x^{18} + 616 x^{17} + 462 x^{16} - 1936 x^{15} - 10186 x^{14} + 13552 x^{13} + 29414 x^{12} + 50860 x^{11} - 211508 x^{10} - 177628 x^{9} + 473968 x^{8} + 332552 x^{7} - 513304 x^{6} - 274868 x^{5} + 468996 x^{4} - 200816 x^{3} - 315568 x^{2} + 213664 x + 42508 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1901122355173875840973860678585777171464192=2^{30}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} - \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{1}{11} a^{3} - \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{3}{11}$, $\frac{1}{11} a^{9} - \frac{1}{11} a^{7} + \frac{2}{11} a^{6} + \frac{2}{11} a^{5} + \frac{2}{11} a^{4} + \frac{4}{11} a^{3} + \frac{5}{11} a^{2} - \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{10} - \frac{3}{11} a^{7} + \frac{4}{11} a^{6} + \frac{5}{11} a^{5} + \frac{2}{11} a^{4} - \frac{5}{11} a^{3} - \frac{3}{11} a^{2} + \frac{3}{11} a + \frac{3}{11}$, $\frac{1}{22} a^{11} - \frac{1}{11}$, $\frac{1}{22} a^{12} - \frac{1}{11} a$, $\frac{1}{22} a^{13} - \frac{1}{11} a^{2}$, $\frac{1}{22} a^{14} - \frac{1}{11} a^{3}$, $\frac{1}{242} a^{15} + \frac{3}{242} a^{14} + \frac{1}{121} a^{13} + \frac{1}{242} a^{12} + \frac{5}{242} a^{11} + \frac{5}{11} a^{7} + \frac{3}{11} a^{6} - \frac{12}{121} a^{4} - \frac{58}{121} a^{3} - \frac{2}{121} a^{2} + \frac{43}{121} a - \frac{38}{121}$, $\frac{1}{242} a^{16} + \frac{2}{121} a^{14} - \frac{5}{242} a^{13} + \frac{1}{121} a^{12} - \frac{2}{121} a^{11} + \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{56}{121} a^{5} - \frac{3}{11} a^{4} - \frac{15}{121} a^{3} - \frac{17}{121} a^{2} + \frac{9}{121} a + \frac{59}{121}$, $\frac{1}{242} a^{17} + \frac{5}{242} a^{14} + \frac{5}{242} a^{13} + \frac{3}{242} a^{12} + \frac{1}{121} a^{11} + \frac{4}{11} a^{7} + \frac{10}{121} a^{6} + \frac{2}{11} a^{5} - \frac{4}{11} a^{4} + \frac{50}{121} a^{3} + \frac{28}{121} a^{2} + \frac{19}{121} a - \frac{57}{121}$, $\frac{1}{242} a^{18} + \frac{1}{242} a^{14} + \frac{2}{121} a^{13} - \frac{3}{242} a^{12} - \frac{3}{242} a^{11} - \frac{45}{121} a^{7} + \frac{1}{11} a^{6} - \frac{5}{11} a^{5} - \frac{4}{11} a^{4} + \frac{21}{121} a^{3} - \frac{59}{121} a^{2} + \frac{14}{121} a + \frac{36}{121}$, $\frac{1}{242} a^{19} + \frac{1}{242} a^{14} - \frac{5}{242} a^{13} - \frac{2}{121} a^{12} - \frac{5}{242} a^{11} - \frac{1}{121} a^{8} - \frac{2}{11} a^{7} - \frac{3}{11} a^{5} - \frac{5}{11} a^{4} + \frac{43}{121} a^{3} - \frac{28}{121} a^{2} - \frac{51}{121} a + \frac{49}{121}$, $\frac{1}{242} a^{20} + \frac{3}{242} a^{14} + \frac{5}{242} a^{13} + \frac{5}{242} a^{12} - \frac{5}{242} a^{11} - \frac{1}{121} a^{9} - \frac{4}{11} a^{7} - \frac{2}{11} a^{6} + \frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{41}{121} a^{3} + \frac{39}{121} a^{2} - \frac{27}{121} a - \frac{17}{121}$, $\frac{1}{114893456003467802225959403762029004082221042} a^{21} + \frac{97537510640286359615238943342090062356800}{57446728001733901112979701881014502041110521} a^{20} - \frac{96993066684756328332610457577506064022855}{114893456003467802225959403762029004082221042} a^{19} - \frac{103360914360588660410641884338350381468353}{57446728001733901112979701881014502041110521} a^{18} - \frac{117329021410853324790563125971393848658859}{114893456003467802225959403762029004082221042} a^{17} - \frac{236655041860722188722146614441795150774239}{114893456003467802225959403762029004082221042} a^{16} - \frac{17131516717570696288034300483611093978165}{10444859636678891111450854887457182189292822} a^{15} + \frac{949237415847419894424431857544101631582569}{114893456003467802225959403762029004082221042} a^{14} - \frac{58124729037717783844139238471892348348211}{10444859636678891111450854887457182189292822} a^{13} - \frac{1050209454784509890335956892136156768679227}{57446728001733901112979701881014502041110521} a^{12} - \frac{117829147487077191423348047480710023959920}{5222429818339445555725427443728591094646411} a^{11} + \frac{857411808374113735931235529251652472547176}{57446728001733901112979701881014502041110521} a^{10} - \frac{1831002419974619995077707254663125817082786}{57446728001733901112979701881014502041110521} a^{9} - \frac{1642161086789231109113155287316749881474560}{57446728001733901112979701881014502041110521} a^{8} - \frac{20646514735058719598668639907199380645370085}{57446728001733901112979701881014502041110521} a^{7} - \frac{1582536879346074987773388792126069088347302}{57446728001733901112979701881014502041110521} a^{6} + \frac{23928839737167024915973815062162540139139141}{57446728001733901112979701881014502041110521} a^{5} - \frac{1184403776666231486923657469869819915925394}{5222429818339445555725427443728591094646411} a^{4} - \frac{23992401855904204875295584089591509608631556}{57446728001733901112979701881014502041110521} a^{3} - \frac{1261966442598468535502530619179354219777534}{5222429818339445555725427443728591094646411} a^{2} + \frac{21302864333727871240486957973633159540923878}{57446728001733901112979701881014502041110521} a - \frac{1215048914345128828866403712274768690290777}{5222429818339445555725427443728591094646411}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10506364228100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||