Normalized defining polynomial
\( x^{22} - 11 x^{21} + 44 x^{20} - 11 x^{19} - 572 x^{18} + 2057 x^{17} - 1199 x^{16} - 10714 x^{15} + 29843 x^{14} - 10395 x^{13} - 81246 x^{12} + 129491 x^{11} + 33000 x^{10} - 193941 x^{9} - 23001 x^{8} + 208758 x^{7} - 19723 x^{6} - 296241 x^{5} + 63338 x^{4} + 196317 x^{3} + 17182 x^{2} + 1155 x - 63 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1856564799974488125951035818931423019008=2^{20}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{12} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{95195963026587064457317582885432375029105586940868132} a^{21} - \frac{1250284237006379577480569489579953190970547761013541}{95195963026587064457317582885432375029105586940868132} a^{20} - \frac{2178317104051969891466760252421734807352896436461871}{23798990756646766114329395721358093757276396735217033} a^{19} - \frac{626870058642279028311416159729287797437287496891546}{23798990756646766114329395721358093757276396735217033} a^{18} + \frac{2091168592052997061668542438958335390166343554536068}{23798990756646766114329395721358093757276396735217033} a^{17} + \frac{604128715773500703938567786699727363950719045268147}{95195963026587064457317582885432375029105586940868132} a^{16} + \frac{1773617301504151491188904676155128246088484103053648}{23798990756646766114329395721358093757276396735217033} a^{15} - \frac{349213475414832204145441321222177506388325274148390}{1830691596665135854948415055489084135175107441170541} a^{14} - \frac{2705635340811555256389021476505528930503490564242695}{95195963026587064457317582885432375029105586940868132} a^{13} - \frac{648857741667986488900088851830261385720904005133291}{31731987675529021485772527628477458343035195646956044} a^{12} - \frac{2768119622572283203609445773357854772052918909789441}{15865993837764510742886263814238729171517597823478022} a^{11} - \frac{1420996532411079516786131161752138647907986607469025}{47597981513293532228658791442716187514552793470434066} a^{10} + \frac{2456468782859983790214169110662495639165709123004751}{15865993837764510742886263814238729171517597823478022} a^{9} - \frac{1842353858328812408277334940055184630968730608311695}{31731987675529021485772527628477458343035195646956044} a^{8} + \frac{1850280372955898616938808731797103442446017733462323}{15865993837764510742886263814238729171517597823478022} a^{7} - \frac{1890373520017523895440321390691289654462828239665469}{15865993837764510742886263814238729171517597823478022} a^{6} + \frac{2745440396358392846539082443808907568971722753099735}{95195963026587064457317582885432375029105586940868132} a^{5} - \frac{233694208508328385520812318094192824322977794079771}{31731987675529021485772527628477458343035195646956044} a^{4} - \frac{8908618378587699490784422833233730949322362914930839}{47597981513293532228658791442716187514552793470434066} a^{3} + \frac{7668955620415456974092948919148447242517873492214759}{15865993837764510742886263814238729171517597823478022} a^{2} - \frac{17961549164724720455937329509914335895636118535867881}{47597981513293532228658791442716187514552793470434066} a + \frac{4091820918153871577959166956207430839183637048026961}{31731987675529021485772527628477458343035195646956044}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338205595470 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||