Normalized defining polynomial
\( x^{22} - 2 x^{21} - 2 x^{20} + 24 x^{19} - 83 x^{18} - 30 x^{17} + 161 x^{16} + 292 x^{15} + 431 x^{14} - 4032 x^{13} + 7422 x^{12} - 3707 x^{11} - 11808 x^{10} + 25440 x^{9} - 18429 x^{8} + 765 x^{7} + 7197 x^{6} - 4873 x^{5} + 1431 x^{4} - 165 x^{3} - 15 x^{2} + 8 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17471883970840462300304775614373553=1297^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{16} + \frac{1}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{15} - \frac{2}{5} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{19} - \frac{2}{5} a^{16} - \frac{2}{5} a^{15} - \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{935} a^{20} + \frac{86}{935} a^{19} + \frac{59}{935} a^{18} + \frac{89}{935} a^{17} - \frac{3}{187} a^{16} + \frac{174}{935} a^{15} - \frac{12}{55} a^{14} + \frac{456}{935} a^{13} - \frac{122}{935} a^{12} + \frac{409}{935} a^{11} - \frac{42}{935} a^{10} + \frac{254}{935} a^{9} + \frac{271}{935} a^{8} + \frac{168}{935} a^{7} + \frac{258}{935} a^{6} - \frac{328}{935} a^{5} + \frac{32}{85} a^{4} + \frac{177}{935} a^{3} + \frac{397}{935} a^{2} - \frac{23}{187} a + \frac{18}{187}$, $\frac{1}{8140327306826665060778167178855} a^{21} - \frac{2244294059500615261170263544}{8140327306826665060778167178855} a^{20} + \frac{51121907442756333526649091321}{8140327306826665060778167178855} a^{19} - \frac{459005050296024599493110744437}{8140327306826665060778167178855} a^{18} - \frac{497226837037480321568397027213}{8140327306826665060778167178855} a^{17} - \frac{868085210262918266927066915392}{8140327306826665060778167178855} a^{16} - \frac{2796108493955673653428627196969}{8140327306826665060778167178855} a^{15} + \frac{2817026996027920069281583699658}{8140327306826665060778167178855} a^{14} + \frac{13848117370552745919879315644}{148005951033212092014148494161} a^{13} + \frac{1391521228134686836719034886167}{8140327306826665060778167178855} a^{12} + \frac{20253860742642446286427325423}{1628065461365333012155633435771} a^{11} - \frac{1303985710696946132736645748998}{8140327306826665060778167178855} a^{10} + \frac{2761829369257018021105809227568}{8140327306826665060778167178855} a^{9} + \frac{25716631628986023034423523909}{740029755166060460070742470805} a^{8} - \frac{337298263089484038508621504872}{1628065461365333012155633435771} a^{7} - \frac{2237170752260294241198089198386}{8140327306826665060778167178855} a^{6} - \frac{1483652499016720879864954832262}{8140327306826665060778167178855} a^{5} + \frac{219999711278012032247023318514}{1628065461365333012155633435771} a^{4} + \frac{112432560631050571749113997371}{1628065461365333012155633435771} a^{3} - \frac{2886490038096382534512545159713}{8140327306826665060778167178855} a^{2} - \frac{2841580694299203044904438760586}{8140327306826665060778167178855} a - \frac{1681643307132797671146817720424}{8140327306826665060778167178855}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1351543404.27 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||