Normalized defining polynomial
\( x^{22} - 5 x^{21} + 4 x^{20} + 19 x^{19} - 39 x^{18} + 11 x^{17} - 8 x^{16} + 47 x^{15} + 183 x^{14} - 603 x^{13} + 274 x^{12} + 853 x^{11} - 1093 x^{10} - 146 x^{9} + 897 x^{8} - 256 x^{7} - 277 x^{6} + 109 x^{5} + 47 x^{4} - 10 x^{3} - 11 x^{2} + x + 1 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[10, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1622619348151146292612416109\)\(\medspace = 29101\cdot 372881^{2}\cdot 633263^{2}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $17.25$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $29101, 372881, 633263$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{21973238906612309647} a^{21} + \frac{10662796603758939631}{21973238906612309647} a^{20} + \frac{4878735514088318700}{21973238906612309647} a^{19} - \frac{3847582377495206556}{21973238906612309647} a^{18} - \frac{833858017405647966}{21973238906612309647} a^{17} - \frac{1566651685288576015}{21973238906612309647} a^{16} + \frac{6441536972417417266}{21973238906612309647} a^{15} - \frac{4562282700517149192}{21973238906612309647} a^{14} - \frac{10718342161212807321}{21973238906612309647} a^{13} + \frac{10776092134552029209}{21973238906612309647} a^{12} - \frac{10756613543521451365}{21973238906612309647} a^{11} + \frac{10520112356689591192}{21973238906612309647} a^{10} + \frac{10202122454098416994}{21973238906612309647} a^{9} - \frac{7743642265557085428}{21973238906612309647} a^{8} + \frac{2201701960938222204}{21973238906612309647} a^{7} + \frac{4176508907684710702}{21973238906612309647} a^{6} + \frac{3618426347443149109}{21973238906612309647} a^{5} - \frac{9393347312293373484}{21973238906612309647} a^{4} + \frac{9156425713015353779}{21973238906612309647} a^{3} - \frac{903299224406662010}{21973238906612309647} a^{2} - \frac{8555519410790716427}{21973238906612309647} a - \frac{2164952724666371194}{21973238906612309647}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 172549.025737 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 81749606400 |
The 752 conjugacy class representatives for t22n53 are not computed |
Character table for t22n53 is not computed |
Intermediate fields
11.5.236131740703.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $22$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
29101 | Data not computed | ||||||
372881 | Data not computed | ||||||
633263 | Data not computed |