Normalized defining polynomial
\( x^{22} + 46 x^{20} + 190 x^{18} - 6375 x^{16} - 10215 x^{14} + 216612 x^{12} - 238743 x^{10} - 440280 x^{8} + 83280 x^{6} + 151040 x^{4} + 14336 x^{2} - 1024 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15646172003756569249283257910156250000000000=2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{7}{16} a^{10} - \frac{7}{16} a^{8} + \frac{1}{4} a^{6} - \frac{7}{16} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{17} + \frac{1}{32} a^{15} + \frac{3}{32} a^{13} - \frac{15}{64} a^{11} - \frac{1}{2} a^{10} + \frac{13}{64} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{23}{64} a^{5} - \frac{1}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{128} a^{18} + \frac{1}{64} a^{16} + \frac{3}{64} a^{14} - \frac{1}{4} a^{13} + \frac{17}{128} a^{12} + \frac{45}{128} a^{10} - \frac{7}{16} a^{8} + \frac{1}{4} a^{7} + \frac{41}{128} a^{6} - \frac{1}{4} a^{5} - \frac{9}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{256} a^{19} - \frac{1}{128} a^{17} - \frac{1}{128} a^{15} - \frac{1}{8} a^{14} + \frac{57}{256} a^{13} - \frac{1}{4} a^{12} - \frac{87}{256} a^{11} + \frac{1}{4} a^{10} + \frac{21}{64} a^{9} - \frac{1}{8} a^{8} + \frac{9}{256} a^{7} + \frac{3}{8} a^{6} + \frac{15}{32} a^{5} - \frac{5}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1431379356562666646734771082752} a^{20} - \frac{2039084049607083674125278117}{715689678281333323367385541376} a^{18} + \frac{6047056056215246504335032103}{715689678281333323367385541376} a^{16} - \frac{1}{16} a^{15} - \frac{160702998051530433301556796087}{1431379356562666646734771082752} a^{14} - \frac{1}{8} a^{13} + \frac{333597341475037807009414272033}{1431379356562666646734771082752} a^{12} - \frac{3}{8} a^{11} - \frac{68040002485258099939896108381}{357844839140666661683692770688} a^{10} - \frac{1}{16} a^{9} + \frac{697294728998240491124302464041}{1431379356562666646734771082752} a^{8} + \frac{3}{16} a^{7} - \frac{23315353623475453804400018337}{89461209785166665420923192672} a^{6} - \frac{1}{2} a^{5} + \frac{16606743888683101959472950379}{89461209785166665420923192672} a^{4} + \frac{7}{16} a^{3} - \frac{2106515027486354883258515293}{5591325611572916588807699542} a^{2} + \frac{1}{4} a - \frac{913560844636942650002725790}{2795662805786458294403849771}$, $\frac{1}{2862758713125333293469542165504} a^{21} - \frac{2039084049607083674125278117}{1431379356562666646734771082752} a^{19} + \frac{6047056056215246504335032103}{1431379356562666646734771082752} a^{17} - \frac{1}{32} a^{16} - \frac{160702998051530433301556796087}{2862758713125333293469542165504} a^{15} - \frac{1}{16} a^{14} + \frac{333597341475037807009414272033}{2862758713125333293469542165504} a^{13} - \frac{3}{16} a^{12} + \frac{289804836655408561743796662307}{715689678281333323367385541376} a^{11} + \frac{15}{32} a^{10} + \frac{697294728998240491124302464041}{2862758713125333293469542165504} a^{9} - \frac{13}{32} a^{8} - \frac{23315353623475453804400018337}{178922419570333330841846385344} a^{7} - \frac{1}{4} a^{6} + \frac{16606743888683101959472950379}{178922419570333330841846385344} a^{5} - \frac{9}{32} a^{4} - \frac{2106515027486354883258515293}{11182651223145833177615399084} a^{3} + \frac{1}{8} a^{2} + \frac{1882101961149515644401123981}{5591325611572916588807699542} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208735836732000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |