Normalized defining polynomial
\( x^{22} - x^{21} - 15 x^{20} + 35 x^{19} + 25 x^{18} - 702 x^{17} + 3432 x^{16} + 15225 x^{15} - 61200 x^{14} - 188900 x^{13} + 464426 x^{12} + 1329204 x^{11} - 2392015 x^{10} - 5062310 x^{9} + 10204785 x^{8} + 9013785 x^{7} - 33166500 x^{6} + 4116735 x^{5} + 69240535 x^{4} - 86769655 x^{3} + 33467790 x^{2} + 2877980 x - 3125465 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15646172003756569249283257910156250000000000=2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{3} + \frac{2}{9}$, $\frac{1}{9} a^{10} - \frac{1}{3} a^{3} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{27} a^{2} + \frac{2}{27} a + \frac{2}{27}$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{9} - \frac{1}{9} a^{6} + \frac{5}{27} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{10} - \frac{1}{9} a^{7} - \frac{4}{27} a^{4} + \frac{1}{3} a^{3} + \frac{7}{27} a - \frac{1}{3}$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{13} + \frac{1}{81} a^{12} - \frac{1}{81} a^{11} - \frac{1}{81} a^{10} - \frac{1}{81} a^{9} - \frac{1}{27} a^{8} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} + \frac{5}{81} a^{5} + \frac{5}{81} a^{4} + \frac{32}{81} a^{3} - \frac{2}{81} a^{2} - \frac{2}{81} a - \frac{29}{81}$, $\frac{1}{81} a^{15} + \frac{1}{81} a^{12} + \frac{4}{81} a^{9} - \frac{1}{81} a^{6} - \frac{19}{81} a^{3} + \frac{14}{81}$, $\frac{1}{243} a^{16} - \frac{1}{243} a^{15} - \frac{2}{243} a^{13} + \frac{2}{243} a^{12} - \frac{2}{243} a^{10} + \frac{2}{243} a^{9} + \frac{35}{243} a^{7} + \frac{19}{243} a^{6} + \frac{1}{9} a^{5} - \frac{34}{243} a^{4} - \frac{101}{243} a^{3} - \frac{1}{9} a^{2} + \frac{2}{243} a + \frac{79}{243}$, $\frac{1}{243} a^{17} - \frac{1}{243} a^{15} + \frac{1}{243} a^{14} + \frac{1}{81} a^{13} - \frac{4}{243} a^{12} + \frac{4}{243} a^{11} + \frac{2}{81} a^{10} - \frac{10}{243} a^{9} - \frac{1}{243} a^{8} + \frac{2}{27} a^{7} + \frac{37}{243} a^{6} + \frac{35}{243} a^{5} - \frac{4}{81} a^{4} - \frac{50}{243} a^{3} - \frac{40}{243} a^{2} - \frac{5}{81} a + \frac{28}{243}$, $\frac{1}{729} a^{18} - \frac{1}{243} a^{15} + \frac{1}{81} a^{13} - \frac{1}{81} a^{12} - \frac{1}{81} a^{10} - \frac{35}{729} a^{9} - \frac{1}{27} a^{8} - \frac{1}{27} a^{7} - \frac{14}{243} a^{6} + \frac{2}{27} a^{5} + \frac{5}{81} a^{4} + \frac{26}{81} a^{3} - \frac{1}{27} a^{2} - \frac{2}{81} a - \frac{146}{729}$, $\frac{1}{729} a^{19} - \frac{1}{243} a^{15} + \frac{1}{243} a^{13} - \frac{1}{243} a^{12} + \frac{22}{729} a^{10} - \frac{4}{243} a^{9} + \frac{1}{81} a^{7} - \frac{35}{243} a^{6} + \frac{1}{9} a^{5} - \frac{7}{243} a^{4} - \frac{44}{243} a^{3} - \frac{1}{9} a^{2} - \frac{14}{729} a + \frac{85}{243}$, $\frac{1}{2187} a^{20} + \frac{1}{2187} a^{19} + \frac{1}{2187} a^{18} - \frac{1}{729} a^{17} - \frac{1}{729} a^{16} + \frac{2}{729} a^{15} - \frac{2}{243} a^{12} + \frac{37}{2187} a^{11} + \frac{10}{2187} a^{10} - \frac{8}{2187} a^{9} - \frac{32}{729} a^{8} - \frac{86}{729} a^{7} + \frac{100}{729} a^{6} + \frac{10}{243} a^{5} - \frac{26}{243} a^{4} + \frac{7}{81} a^{3} - \frac{29}{2187} a^{2} + \frac{484}{2187} a - \frac{470}{2187}$, $\frac{1}{1514650481605516606179452753983629744358668039927436346481} a^{21} - \frac{146354493249904812116176530095672006451263328855030749}{1514650481605516606179452753983629744358668039927436346481} a^{20} - \frac{357076590803270250694378136053576371460992297811707536}{1514650481605516606179452753983629744358668039927436346481} a^{19} + \frac{6713245916504848092787444298929715771900882653145780}{24042071136595501685388138952121107053312191109959307087} a^{18} - \frac{198572300806492898572513559167099921184092977526361011}{504883493868505535393150917994543248119556013309145448827} a^{17} + \frac{627101686575338819908692962252150634587118046016165111}{504883493868505535393150917994543248119556013309145448827} a^{16} + \frac{148891858465898821697218205060280826096017642376169282}{56098165985389503932572324221615916457728445923238383203} a^{15} - \frac{5957017738924366506899683279315226027768003040248048}{3434581590942214526484019850303015293330313015708472441} a^{14} + \frac{297213314758769220934812264957699753099947665715193662}{168294497956168511797716972664847749373185337769715149609} a^{13} - \frac{24363530925213109084708382372305483723063773434897747432}{1514650481605516606179452753983629744358668039927436346481} a^{12} + \frac{9615055865009545236488274726706728287609797625381554534}{1514650481605516606179452753983629744358668039927436346481} a^{11} - \frac{273040707254932884528804327230345316896196503202887195}{1514650481605516606179452753983629744358668039927436346481} a^{10} + \frac{15366209886706161147973095531733176258022969385418808841}{504883493868505535393150917994543248119556013309145448827} a^{9} + \frac{2163175853434437796950835052181297502818902017463133979}{504883493868505535393150917994543248119556013309145448827} a^{8} - \frac{78219233485684186540980414715106219930801894609192342372}{504883493868505535393150917994543248119556013309145448827} a^{7} + \frac{8637901503643336978541042700842283179944419907020691756}{168294497956168511797716972664847749373185337769715149609} a^{6} + \frac{8562413668506993092173161321988705709936768795283109280}{56098165985389503932572324221615916457728445923238383203} a^{5} - \frac{803897616665730887682440332622046531796848570955841206}{24042071136595501685388138952121107053312191109959307087} a^{4} + \frac{39632855665968215607540756126019473014831269824885719509}{216378640229359515168493250569089963479809719989633763783} a^{3} - \frac{41399074712644094207091264637172288836426364971964893709}{216378640229359515168493250569089963479809719989633763783} a^{2} - \frac{534234094413414954598942604970800741393265528490003343741}{1514650481605516606179452753983629744358668039927436346481} a - \frac{20426445588177139912076391983496034966521062567423175515}{72126213409786505056164416856363321159936573329877921261}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134053997356000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |