Normalized defining polynomial
\( x^{22} - 14 x^{20} - 170 x^{18} + 2265 x^{16} + 8340 x^{14} - 102513 x^{12} - 94713 x^{10} + 975090 x^{8} + 900525 x^{6} - 1409725 x^{4} - 537079 x^{2} - 9604 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15646172003756569249283257910156250000000000=2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{33} a^{12} - \frac{2}{33} a^{10} - \frac{1}{11} a^{8} - \frac{5}{11} a^{6} + \frac{1}{3} a^{4} - \frac{5}{11} a^{2} - \frac{10}{33}$, $\frac{1}{33} a^{13} - \frac{2}{33} a^{11} - \frac{1}{11} a^{9} - \frac{5}{11} a^{7} + \frac{1}{3} a^{5} - \frac{5}{11} a^{3} - \frac{10}{33} a$, $\frac{1}{33} a^{14} + \frac{4}{33} a^{10} + \frac{1}{33} a^{8} + \frac{14}{33} a^{6} - \frac{4}{33} a^{4} + \frac{4}{33} a^{2} + \frac{13}{33}$, $\frac{1}{33} a^{15} + \frac{4}{33} a^{11} + \frac{1}{33} a^{9} + \frac{14}{33} a^{7} - \frac{4}{33} a^{5} + \frac{4}{33} a^{3} + \frac{13}{33} a$, $\frac{1}{198} a^{16} + \frac{1}{198} a^{14} + \frac{1}{198} a^{12} - \frac{1}{6} a^{11} + \frac{1}{9} a^{10} - \frac{10}{99} a^{8} + \frac{1}{6} a^{7} - \frac{2}{9} a^{6} + \frac{1}{6} a^{5} - \frac{7}{18} a^{4} - \frac{1}{2} a^{3} - \frac{13}{99} a^{2} - \frac{1}{6} a - \frac{28}{99}$, $\frac{1}{198} a^{17} + \frac{1}{198} a^{15} + \frac{1}{198} a^{13} - \frac{1}{66} a^{12} + \frac{1}{9} a^{11} + \frac{1}{33} a^{10} - \frac{10}{99} a^{9} + \frac{1}{22} a^{8} - \frac{2}{9} a^{7} + \frac{5}{22} a^{6} - \frac{7}{18} a^{5} - \frac{1}{6} a^{4} - \frac{13}{99} a^{3} + \frac{5}{22} a^{2} - \frac{28}{99} a + \frac{5}{33}$, $\frac{1}{198} a^{18} - \frac{1}{66} a^{13} - \frac{1}{66} a^{12} - \frac{3}{22} a^{11} + \frac{1}{33} a^{10} + \frac{1}{22} a^{9} - \frac{1}{11} a^{8} + \frac{13}{33} a^{7} - \frac{1}{66} a^{6} - \frac{5}{66} a^{4} - \frac{3}{11} a^{3} - \frac{1}{66} a + \frac{16}{99}$, $\frac{1}{198} a^{19} - \frac{1}{66} a^{14} - \frac{1}{66} a^{13} - \frac{1}{66} a^{12} + \frac{1}{33} a^{11} + \frac{3}{22} a^{10} - \frac{1}{11} a^{9} + \frac{1}{33} a^{8} - \frac{1}{66} a^{7} - \frac{5}{33} a^{6} - \frac{5}{66} a^{5} - \frac{3}{11} a^{4} + \frac{1}{6} a^{2} + \frac{16}{99} a + \frac{4}{33}$, $\frac{1}{19193779631419970375080458} a^{20} - \frac{17353575857991130812722}{9596889815709985187540229} a^{18} - \frac{40022397594422538419779}{19193779631419970375080458} a^{16} - \frac{1}{66} a^{15} - \frac{171402141264507661498}{872444528700907744321839} a^{14} - \frac{1}{66} a^{13} - \frac{215725407181802969819113}{19193779631419970375080458} a^{12} - \frac{1}{33} a^{11} + \frac{173479597789502107400095}{9596889815709985187540229} a^{10} + \frac{1}{33} a^{9} + \frac{1730468144220920318071541}{19193779631419970375080458} a^{8} + \frac{1}{66} a^{7} - \frac{561804347467763010487435}{19193779631419970375080458} a^{6} - \frac{7}{66} a^{5} + \frac{2385122839867249927787183}{19193779631419970375080458} a^{4} - \frac{1}{3} a^{3} - \frac{17188740297988595999371}{9596889815709985187540229} a^{2} - \frac{1}{22} a - \frac{17902797951686198611361}{1066321090634442798615581}$, $\frac{1}{1880990403879157096757884884} a^{21} + \frac{177549153815712388870943}{134356457419939792625563206} a^{19} - \frac{82709310123681279965098}{470247600969789274189471221} a^{17} + \frac{1929610244055842661510163}{170999127625377917887080444} a^{15} + \frac{1472846573431137810108440}{470247600969789274189471221} a^{13} - \frac{1}{66} a^{12} + \frac{51239556703131955966907465}{1880990403879157096757884884} a^{11} - \frac{3}{22} a^{10} + \frac{300106496959931368876140479}{1880990403879157096757884884} a^{9} + \frac{1}{22} a^{8} + \frac{49884658226568313793262025}{940495201939578548378942442} a^{7} + \frac{13}{33} a^{6} + \frac{204792253498477846610453831}{1880990403879157096757884884} a^{5} + \frac{72960148087379970749595121}{1880990403879157096757884884} a^{3} - \frac{3}{11} a^{2} + \frac{579077854975239158181843469}{1880990403879157096757884884} a - \frac{1}{66}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 233503129334000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |