Normalized defining polynomial
\( x^{22} + 33 x^{20} + 363 x^{18} + 1243 x^{16} - 2310 x^{14} - 14278 x^{12} + 9878 x^{10} + 25718 x^{8} - 7051 x^{6} - 363 x^{4} + 143 x^{2} - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1543118794783990130660601200150793158656=2^{26}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{1}{2} a^{2} - \frac{5}{16} a - \frac{3}{16}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} + \frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{3}{16} a^{6} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2} a - \frac{3}{16}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} - \frac{7}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a - \frac{1}{16}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{8} + \frac{1}{16}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{16} + \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{2} + \frac{5}{32} a + \frac{3}{32}$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{3}{32} a^{2} + \frac{1}{4} a + \frac{3}{32}$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{16} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{9}{32} a^{3} + \frac{3}{8} a^{2} + \frac{1}{8} a - \frac{1}{32}$, $\frac{1}{28103676512} a^{20} - \frac{337131771}{28103676512} a^{18} + \frac{87854139}{3512959564} a^{16} + \frac{67220799}{14051838256} a^{14} + \frac{328995315}{7025919128} a^{12} - \frac{320991809}{3512959564} a^{10} - \frac{142906555}{14051838256} a^{8} - \frac{1}{4} a^{7} + \frac{3024972421}{14051838256} a^{6} - \frac{1}{4} a^{5} - \frac{4506759445}{28103676512} a^{4} - \frac{1}{4} a^{3} - \frac{3764689845}{28103676512} a^{2} - \frac{1}{4} a - \frac{5158704005}{14051838256}$, $\frac{1}{56207353024} a^{21} - \frac{1}{56207353024} a^{20} + \frac{67638515}{7025919128} a^{19} - \frac{67638515}{7025919128} a^{18} - \frac{175406779}{56207353024} a^{17} + \frac{175406779}{56207353024} a^{16} - \frac{202754773}{7025919128} a^{15} + \frac{202754773}{7025919128} a^{14} - \frac{220249261}{28103676512} a^{13} + \frac{220249261}{28103676512} a^{12} - \frac{320991809}{7025919128} a^{11} - \frac{278624041}{3512959564} a^{10} + \frac{1613573227}{28103676512} a^{9} + \frac{1899386337}{28103676512} a^{8} - \frac{1658916595}{7025919128} a^{7} + \frac{1658916595}{7025919128} a^{6} + \frac{4275639465}{56207353024} a^{5} - \frac{4275639465}{56207353024} a^{4} - \frac{1607542945}{3512959564} a^{3} + \frac{580366217}{7025919128} a^{2} - \frac{5926208555}{56207353024} a + \frac{27003965939}{56207353024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 720857418211 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |