Normalized defining polynomial
\( x^{22} + 52 x^{20} + 780 x^{18} + 1155 x^{16} - 30984 x^{14} + 41420 x^{12} + 107934 x^{10} - 185407 x^{8} - 82238 x^{6} + 204914 x^{4} - 34481 x^{2} - 24389 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1378014093017618262674910820182954076012544=2^{22}\cdot 29^{3}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5365} a^{18} + \frac{22}{1073} a^{16} - \frac{1163}{5365} a^{14} - \frac{34}{5365} a^{12} + \frac{423}{5365} a^{10} + \frac{211}{5365} a^{8} + \frac{953}{5365} a^{6} + \frac{2194}{5365} a^{4} - \frac{51}{1073} a^{2} - \frac{42}{185}$, $\frac{1}{5365} a^{19} + \frac{22}{1073} a^{17} - \frac{1163}{5365} a^{15} - \frac{34}{5365} a^{13} + \frac{423}{5365} a^{11} + \frac{211}{5365} a^{9} + \frac{953}{5365} a^{7} + \frac{2194}{5365} a^{5} - \frac{51}{1073} a^{3} - \frac{42}{185} a$, $\frac{1}{44704490632851291678790145} a^{20} + \frac{1886706668213413446973}{44704490632851291678790145} a^{18} - \frac{20955306676090810294239933}{44704490632851291678790145} a^{16} - \frac{15515180623371001361477358}{44704490632851291678790145} a^{14} - \frac{12609617722429560928813799}{44704490632851291678790145} a^{12} + \frac{299630193858913165154363}{812808920597296212341639} a^{10} + \frac{17161423182655429729490551}{44704490632851291678790145} a^{8} - \frac{19382623304275894328803307}{44704490632851291678790145} a^{6} + \frac{428887952218540728618747}{4064044602986481061708195} a^{4} + \frac{493699384377182887909108}{1541534159753492816510005} a^{2} - \frac{982027965445260878684}{53156350336327338500345}$, $\frac{1}{44704490632851291678790145} a^{21} + \frac{1886706668213413446973}{44704490632851291678790145} a^{19} - \frac{20955306676090810294239933}{44704490632851291678790145} a^{17} - \frac{15515180623371001361477358}{44704490632851291678790145} a^{15} - \frac{12609617722429560928813799}{44704490632851291678790145} a^{13} + \frac{299630193858913165154363}{812808920597296212341639} a^{11} + \frac{17161423182655429729490551}{44704490632851291678790145} a^{9} - \frac{19382623304275894328803307}{44704490632851291678790145} a^{7} + \frac{428887952218540728618747}{4064044602986481061708195} a^{5} + \frac{493699384377182887909108}{1541534159753492816510005} a^{3} - \frac{982027965445260878684}{53156350336327338500345} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9868033816890 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1297 | Data not computed | ||||||