Normalized defining polynomial
\( x^{22} - x^{21} - 4 x^{20} - x^{19} - 6 x^{18} + 7 x^{17} + 10 x^{16} + 54 x^{15} + 178 x^{14} + 64 x^{13} - 301 x^{12} - 359 x^{11} - 56 x^{10} + 64 x^{9} + 32 x^{8} + 45 x^{7} + 27 x^{6} + 16 x^{5} - 4 x^{4} - 12 x^{3} + 4 x^{2} + 2 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1211544925921916910574267578125=5^{11}\cdot 19457^{2}\cdot 8095783^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19457, 8095783$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{484865932711622746039} a^{21} - \frac{139400163043836945619}{484865932711622746039} a^{20} + \frac{39399409934115060370}{484865932711622746039} a^{19} + \frac{141032539692092566565}{484865932711622746039} a^{18} - \frac{55163495596007235463}{484865932711622746039} a^{17} - \frac{87107510236525136751}{484865932711622746039} a^{16} - \frac{26075899950271865446}{69266561815946106577} a^{15} + \frac{188848729007096802446}{484865932711622746039} a^{14} - \frac{205735968475227914958}{484865932711622746039} a^{13} - \frac{84173371447117843094}{484865932711622746039} a^{12} - \frac{225425861321974968742}{484865932711622746039} a^{11} - \frac{122345624094058541957}{484865932711622746039} a^{10} + \frac{98504131138551917151}{484865932711622746039} a^{9} - \frac{32562838690612442944}{69266561815946106577} a^{8} + \frac{94453054428458800631}{484865932711622746039} a^{7} - \frac{22011832904697092512}{484865932711622746039} a^{6} - \frac{137136192653031052794}{484865932711622746039} a^{5} - \frac{233138125285224754692}{484865932711622746039} a^{4} - \frac{126609621810010556904}{484865932711622746039} a^{3} + \frac{19140101447455433325}{484865932711622746039} a^{2} + \frac{9312748524937186736}{484865932711622746039} a - \frac{46481079985341878830}{484865932711622746039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5475014.69169 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.5.157519649831.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $18{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 19457 | Data not computed | ||||||
| 8095783 | Data not computed | ||||||