Normalized defining polynomial
\( x^{22} + 11 x^{20} - 22 x^{19} - 143 x^{18} - 682 x^{17} - 2563 x^{16} + 396 x^{15} + 17490 x^{14} + 77352 x^{13} + 194766 x^{12} + 246656 x^{11} - 220990 x^{10} - 2045912 x^{9} - 6045534 x^{8} - 12294788 x^{7} - 18335339 x^{6} - 20263760 x^{5} - 15664121 x^{4} - 7715994 x^{3} - 2197811 x^{2} - 317966 x - 17727 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118820147198367240060866292411611073216512=2^{26}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{4}$, $\frac{1}{5213855227574284441259236716829434840352696624910153985694626724} a^{21} - \frac{113413670089936792727657588396749081068851628172759479112226569}{1303463806893571110314809179207358710088174156227538496423656681} a^{20} - \frac{90986506699384537676488007899896093434531991770693506796881603}{5213855227574284441259236716829434840352696624910153985694626724} a^{19} + \frac{508775579938361359967220368512274401863219914888176205092360323}{5213855227574284441259236716829434840352696624910153985694626724} a^{18} - \frac{532367695902307608724725366039174664794978986469356908442947057}{5213855227574284441259236716829434840352696624910153985694626724} a^{17} - \frac{580376734517249009390072736130090552286491008936965066510625371}{5213855227574284441259236716829434840352696624910153985694626724} a^{16} + \frac{299468111836464189928494851969562709872463602565980221576259997}{5213855227574284441259236716829434840352696624910153985694626724} a^{15} + \frac{215599154298066799739457583243581646526740913366402265274244777}{5213855227574284441259236716829434840352696624910153985694626724} a^{14} - \frac{85340159187227202702983571419342217329419296837949079377583749}{744836461082040634465605245261347834336099517844307712242089532} a^{13} - \frac{1225071268348207991876090356403858939137559942865837887938308523}{5213855227574284441259236716829434840352696624910153985694626724} a^{12} + \frac{175043062194051617247400327451593672688804065666753495408089445}{5213855227574284441259236716829434840352696624910153985694626724} a^{11} + \frac{131307044512623278920879282977143628944863023601169074976281083}{744836461082040634465605245261347834336099517844307712242089532} a^{10} - \frac{40036785492966702249384537245028868930752947121863270550585589}{744836461082040634465605245261347834336099517844307712242089532} a^{9} + \frac{1078337897040309487454132035934553024342693777408587512121541963}{5213855227574284441259236716829434840352696624910153985694626724} a^{8} - \frac{1083948988762012965550230683846216965241951394584715666743033081}{5213855227574284441259236716829434840352696624910153985694626724} a^{7} + \frac{2593382960849253621985340863002381235076037163961934025147213479}{5213855227574284441259236716829434840352696624910153985694626724} a^{6} + \frac{644149970069211764901859386785079519760289369585093828279945327}{2606927613787142220629618358414717420176348312455076992847313362} a^{5} - \frac{2214672935849911964251867322968691263044198792963934425510079557}{5213855227574284441259236716829434840352696624910153985694626724} a^{4} - \frac{160287581007260264075314195617242992690809312346319290340274395}{2606927613787142220629618358414717420176348312455076992847313362} a^{3} - \frac{327234777021164613252144881514959336950234638955466370624149461}{1303463806893571110314809179207358710088174156227538496423656681} a^{2} - \frac{125028304720570079565526448858501683463540051311973609196640670}{1303463806893571110314809179207358710088174156227538496423656681} a + \frac{615095637804872960823355741744630980733195281464702889470648426}{1303463806893571110314809179207358710088174156227538496423656681}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8820189159190 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||