Normalized defining polynomial
\( x^{22} + 11 x^{20} - 341 x^{18} + 693 x^{16} + 6402 x^{14} - 5434 x^{12} - 36850 x^{10} - 27742 x^{8} + 3245 x^{6} + 4191 x^{4} + 407 x^{2} - 7 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11061075521011641256575189402680885361246208=2^{36}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{2} + \frac{3}{8}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{5}{16} a + \frac{5}{16}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{16} a^{2} - \frac{1}{16}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} + \frac{1}{16} a^{3} + \frac{3}{8} a + \frac{5}{16}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{8} - \frac{1}{4} a^{4} + \frac{5}{32}$, $\frac{1}{32} a^{17} + \frac{1}{16} a^{9} - \frac{1}{4} a^{5} + \frac{5}{32} a$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{4} + \frac{1}{32} a^{2} + \frac{3}{8}$, $\frac{1}{64} a^{19} - \frac{1}{64} a^{18} - \frac{1}{64} a^{17} - \frac{1}{64} a^{16} + \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{5}{64} a^{3} - \frac{5}{64} a^{2} - \frac{5}{64} a - \frac{5}{64}$, $\frac{1}{3643872475009472} a^{20} + \frac{13379436178203}{910968118752368} a^{18} - \frac{28886572899685}{3643872475009472} a^{16} + \frac{10108400250107}{455484059376184} a^{14} + \frac{76528332850353}{1821936237504736} a^{12} + \frac{15508900643487}{455484059376184} a^{10} - \frac{193312600218293}{1821936237504736} a^{8} + \frac{78775242708999}{455484059376184} a^{6} - \frac{795111471588995}{3643872475009472} a^{4} + \frac{392249730162467}{910968118752368} a^{2} - \frac{208405129793169}{3643872475009472}$, $\frac{1}{3643872475009472} a^{21} - \frac{3417762709211}{3643872475009472} a^{19} - \frac{1}{64} a^{18} + \frac{14024467261169}{1821936237504736} a^{17} - \frac{1}{64} a^{16} + \frac{10108400250107}{455484059376184} a^{15} - \frac{37342681993693}{1821936237504736} a^{13} - \frac{1}{16} a^{12} + \frac{5100095151925}{1821936237504736} a^{11} - \frac{1}{32} a^{10} + \frac{51308987933967}{455484059376184} a^{9} - \frac{3}{32} a^{8} + \frac{2729966910872}{56935507422023} a^{7} - \frac{1}{8} a^{6} + \frac{799082736227649}{3643872475009472} a^{5} + \frac{3}{16} a^{4} - \frac{1448582972717351}{3643872475009472} a^{3} + \frac{11}{64} a^{2} + \frac{607491277878703}{1821936237504736} a - \frac{1}{64}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51106769365100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||