Normalized defining polynomial
\( x^{22} + 11 x^{20} - 121 x^{18} - 935 x^{16} + 5258 x^{14} + 16830 x^{12} - 52690 x^{10} - 105182 x^{8} + 181093 x^{6} + 216359 x^{4} - 183909 x^{2} - 24299 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1086355631527929051985063244906158383693824=2^{32}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} + \frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{3}{16} a^{6} - \frac{3}{16} a^{4} - \frac{1}{2} a^{3} + \frac{3}{16} a^{2} - \frac{1}{2} a - \frac{3}{16}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{7}{16} a^{3} - \frac{1}{8} a^{2} + \frac{7}{16} a - \frac{1}{8}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{8} + \frac{1}{16}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{9} + \frac{1}{16} a$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{3}{32} a^{2} + \frac{1}{4} a + \frac{3}{32}$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{17} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{9}{32} a^{3} + \frac{1}{8} a^{2} + \frac{7}{32} a + \frac{1}{8}$, $\frac{1}{1449038549786493031904} a^{20} - \frac{1774616534121639949}{724519274893246515952} a^{18} - \frac{4670384297316278865}{1449038549786493031904} a^{16} - \frac{552639662572190013}{45282454680827907247} a^{14} - \frac{31233964654061901591}{724519274893246515952} a^{12} - \frac{42488858418649869377}{362259637446623257976} a^{10} + \frac{82486514180344778283}{724519274893246515952} a^{8} - \frac{17790913840497250737}{90564909361655814494} a^{6} - \frac{260107677669594479859}{1449038549786493031904} a^{4} + \frac{276937883711031354071}{724519274893246515952} a^{2} - \frac{468529070762909377413}{1449038549786493031904}$, $\frac{1}{68104811839965172499488} a^{21} - \frac{68810990288302680845}{17026202959991293124872} a^{19} + \frac{810413799957586051581}{68104811839965172499488} a^{17} + \frac{44177175355683527221}{4256550739997823281218} a^{15} + \frac{421590582154217170879}{34052405919982586249744} a^{13} - \frac{89168111230566795559}{8513101479995646562436} a^{11} - \frac{2453330947946018027549}{34052405919982586249744} a^{9} + \frac{978423089137716708697}{4256550739997823281218} a^{7} - \frac{11309026619791603848127}{68104811839965172499488} a^{5} + \frac{4870485456002031984347}{17026202959991293124872} a^{3} - \frac{32437942075427411893795}{68104811839965172499488} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50207875662600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||