Normalized defining polynomial
\( x^{22} - 9 x^{21} + 8 x^{20} + 69 x^{19} + 341 x^{18} - 1536 x^{17} - 1667 x^{16} + 252 x^{15} + 45513 x^{14} + 12225 x^{13} + 72521 x^{12} - 276013 x^{11} + 757511 x^{10} + 840645 x^{9} + 11788951 x^{8} + 27209924 x^{7} + 94723994 x^{6} + 160917509 x^{5} + 349577039 x^{4} + 428625612 x^{3} + 683809164 x^{2} + 522560028 x + 589202287 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-948015833262595128634255168492301209005419806211=-\,11^{11}\cdot 67^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $151.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(737=11\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{737}(1,·)$, $\chi_{737}(131,·)$, $\chi_{737}(263,·)$, $\chi_{737}(265,·)$, $\chi_{737}(76,·)$, $\chi_{737}(397,·)$, $\chi_{737}(461,·)$, $\chi_{737}(210,·)$, $\chi_{737}(595,·)$, $\chi_{737}(89,·)$, $\chi_{737}(604,·)$, $\chi_{737}(417,·)$, $\chi_{737}(483,·)$, $\chi_{737}(551,·)$, $\chi_{737}(617,·)$, $\chi_{737}(494,·)$, $\chi_{737}(560,·)$, $\chi_{737}(241,·)$, $\chi_{737}(692,·)$, $\chi_{737}(694,·)$, $\chi_{737}(375,·)$, $\chi_{737}(628,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{37} a^{17} + \frac{6}{37} a^{16} + \frac{1}{37} a^{15} + \frac{16}{37} a^{14} - \frac{4}{37} a^{13} - \frac{10}{37} a^{12} + \frac{3}{37} a^{11} + \frac{7}{37} a^{10} - \frac{4}{37} a^{9} - \frac{5}{37} a^{8} + \frac{18}{37} a^{7} - \frac{10}{37} a^{6} - \frac{5}{37} a^{5} + \frac{16}{37} a^{4} + \frac{16}{37} a^{3} - \frac{9}{37} a^{2} - \frac{11}{37} a - \frac{7}{37}$, $\frac{1}{37} a^{18} + \frac{2}{37} a^{16} + \frac{10}{37} a^{15} + \frac{11}{37} a^{14} + \frac{14}{37} a^{13} - \frac{11}{37} a^{12} - \frac{11}{37} a^{11} - \frac{9}{37} a^{10} - \frac{18}{37} a^{9} + \frac{11}{37} a^{8} - \frac{7}{37} a^{7} + \frac{18}{37} a^{6} + \frac{9}{37} a^{5} - \frac{6}{37} a^{4} + \frac{6}{37} a^{3} + \frac{6}{37} a^{2} - \frac{15}{37} a + \frac{5}{37}$, $\frac{1}{37} a^{19} - \frac{2}{37} a^{16} + \frac{9}{37} a^{15} - \frac{18}{37} a^{14} - \frac{3}{37} a^{13} + \frac{9}{37} a^{12} - \frac{15}{37} a^{11} + \frac{5}{37} a^{10} - \frac{18}{37} a^{9} + \frac{3}{37} a^{8} - \frac{18}{37} a^{7} - \frac{8}{37} a^{6} + \frac{4}{37} a^{5} + \frac{11}{37} a^{4} + \frac{11}{37} a^{3} + \frac{3}{37} a^{2} - \frac{10}{37} a + \frac{14}{37}$, $\frac{1}{256447} a^{20} - \frac{1587}{256447} a^{19} - \frac{1729}{256447} a^{18} - \frac{199}{256447} a^{17} - \frac{88518}{256447} a^{16} + \frac{47207}{256447} a^{15} + \frac{95858}{256447} a^{14} + \frac{2426}{6931} a^{13} + \frac{30186}{256447} a^{12} + \frac{53264}{256447} a^{11} - \frac{69362}{256447} a^{10} - \frac{103875}{256447} a^{9} - \frac{67213}{256447} a^{8} + \frac{116443}{256447} a^{7} + \frac{23286}{256447} a^{6} - \frac{101240}{256447} a^{5} + \frac{34731}{256447} a^{4} + \frac{96041}{256447} a^{3} + \frac{2319}{8843} a^{2} - \frac{76745}{256447} a + \frac{57910}{256447}$, $\frac{1}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{21} - \frac{58238628526222943012702938159767059751892618490583577620849135729}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{20} - \frac{452926252901941751824753300348600366690769947400379039844158594698744}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{19} + \frac{215279620975017936079404189276015525329254816759474704484400190312358}{29449955956653580438521043930299963126929456094344372888716813859859973} a^{18} + \frac{3260445199982317554584415657281797968405952280448002118579379934758651}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{17} - \frac{153632218259421166466186215492939905286207715164623371070953173622756341}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{16} + \frac{170645905629739922569722092534396891242976818237898598042070686283485621}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{15} + \frac{333541202203007888479040174490841686687022505591320375665400752803298128}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{14} + \frac{111851250666698262458219412581163273196915054083207120982898348887658620}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{13} + \frac{7550571227904857236604142116910279213893235210497265337721821727447837}{29449955956653580438521043930299963126929456094344372888716813859859973} a^{12} + \frac{337665142093970009311487365099741157943512616779042581615735913376629737}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{11} + \frac{124316768267351412127682584820136322114657064856892341254213663414194765}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{10} - \frac{8258480690479829437379746658651638001584994310575379095098615312991427}{29449955956653580438521043930299963126929456094344372888716813859859973} a^{9} - \frac{111420535469374701673189380187785456567831230387999580057971740165041737}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{8} + \frac{8644845051519242976061107780387515018195478753642149563352056438899650}{23082397911971725208570547945370241369755519641513157128994259511782141} a^{7} - \frac{57506395091914665737558253086266707452017716087633867138792321233769757}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{6} - \frac{427010359686603171898201487334041614775008028686832755764415359905919231}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{5} + \frac{194665842031782246441580164256519117719417163472824139304559199358140940}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{4} - \frac{320969079913490834848986562253617006396379688153035475507077936372160265}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{3} - \frac{372208578694611886448141835106965376301951841396590417315131206643134046}{854048722742953832717110273978698930680954226735986813772787601935939217} a^{2} + \frac{140124994987077987222118224958179428829514386347300893951343853345981926}{854048722742953832717110273978698930680954226735986813772787601935939217} a + \frac{215222720844970172278711999041763628526552453482605810265187835408354344}{854048722742953832717110273978698930680954226735986813772787601935939217}$
Class group and class number
$C_{23}\times C_{117139}$, which has order $2694197$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.042557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $67$ | 67.11.10.1 | $x^{11} - 67$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 67.11.10.1 | $x^{11} - 67$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |