Normalized defining polynomial
\( x^{22} - 55 x^{20} - 66 x^{19} + 1650 x^{18} + 2772 x^{17} - 8855 x^{16} + 22176 x^{15} + 488939 x^{14} + 764610 x^{13} + 2279805 x^{12} + 8316900 x^{11} + 76849531 x^{10} + 89782902 x^{9} + 582513800 x^{8} + 627037026 x^{7} + 5990640084 x^{6} + 3469742298 x^{5} + 36670510998 x^{4} + 7426919808 x^{3} + 173666905632 x^{2} - 2644056756 x + 588511917549 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-92690955403624349298461401159468893114040524800000000000=-\,2^{22}\cdot 5^{11}\cdot 11^{40}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $349.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2420=2^{2}\cdot 5\cdot 11^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2420}(1,·)$, $\chi_{2420}(2179,·)$, $\chi_{2420}(1541,·)$, $\chi_{2420}(199,·)$, $\chi_{2420}(1739,·)$, $\chi_{2420}(1101,·)$, $\chi_{2420}(1299,·)$, $\chi_{2420}(661,·)$, $\chi_{2420}(2201,·)$, $\chi_{2420}(859,·)$, $\chi_{2420}(221,·)$, $\chi_{2420}(2399,·)$, $\chi_{2420}(1761,·)$, $\chi_{2420}(419,·)$, $\chi_{2420}(1959,·)$, $\chi_{2420}(1321,·)$, $\chi_{2420}(1519,·)$, $\chi_{2420}(881,·)$, $\chi_{2420}(1079,·)$, $\chi_{2420}(441,·)$, $\chi_{2420}(1981,·)$, $\chi_{2420}(639,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} - \frac{1}{27} a^{8} + \frac{1}{27} a^{6} - \frac{10}{81} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{81} a^{11} + \frac{1}{27} a^{7} + \frac{8}{81} a^{5} - \frac{4}{27} a^{3}$, $\frac{1}{243} a^{12} - \frac{1}{243} a^{10} - \frac{1}{81} a^{8} - \frac{4}{243} a^{6} - \frac{11}{243} a^{4} + \frac{2}{27} a^{2}$, $\frac{1}{243} a^{13} - \frac{1}{243} a^{11} - \frac{13}{243} a^{7} - \frac{2}{243} a^{5} - \frac{4}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{243} a^{14} - \frac{1}{243} a^{10} + \frac{11}{243} a^{8} - \frac{2}{81} a^{6} - \frac{23}{243} a^{4} + \frac{2}{27} a^{2}$, $\frac{1}{2187} a^{15} - \frac{1}{729} a^{14} - \frac{2}{2187} a^{13} + \frac{7}{2187} a^{11} - \frac{2}{729} a^{10} - \frac{1}{2187} a^{9} - \frac{2}{729} a^{8} + \frac{20}{2187} a^{7} - \frac{10}{243} a^{6} - \frac{142}{2187} a^{5} - \frac{55}{729} a^{4} - \frac{14}{243} a^{3} + \frac{37}{81} a^{2} - \frac{2}{9} a$, $\frac{1}{6561} a^{16} + \frac{7}{6561} a^{14} + \frac{4}{2187} a^{13} - \frac{11}{6561} a^{12} - \frac{1}{2187} a^{11} + \frac{8}{6561} a^{10} + \frac{2}{729} a^{9} + \frac{173}{6561} a^{8} + \frac{47}{2187} a^{7} + \frac{119}{6561} a^{6} - \frac{263}{2187} a^{5} + \frac{31}{243} a^{4} - \frac{4}{243} a^{3} + \frac{31}{81} a^{2} - \frac{4}{9} a$, $\frac{1}{6561} a^{17} + \frac{1}{6561} a^{15} + \frac{1}{2187} a^{14} + \frac{1}{6561} a^{13} - \frac{1}{2187} a^{12} - \frac{34}{6561} a^{11} + \frac{17}{6561} a^{9} + \frac{41}{2187} a^{8} - \frac{244}{6561} a^{7} - \frac{110}{2187} a^{6} + \frac{158}{2187} a^{5} + \frac{14}{729} a^{4} - \frac{8}{243} a^{3} - \frac{17}{81} a^{2} + \frac{2}{9} a$, $\frac{1}{19683} a^{18} + \frac{1}{6561} a^{14} - \frac{4}{2187} a^{13} - \frac{23}{19683} a^{12} + \frac{1}{2187} a^{11} - \frac{2}{729} a^{10} + \frac{4}{729} a^{9} - \frac{52}{6561} a^{8} - \frac{20}{2187} a^{7} - \frac{1076}{19683} a^{6} - \frac{88}{2187} a^{5} + \frac{352}{2187} a^{4} - \frac{34}{243} a^{3} - \frac{77}{243} a^{2} + \frac{11}{27} a$, $\frac{1}{177147} a^{19} - \frac{1}{59049} a^{18} + \frac{1}{59049} a^{17} - \frac{4}{59049} a^{16} - \frac{13}{59049} a^{15} + \frac{113}{59049} a^{14} + \frac{115}{177147} a^{13} - \frac{95}{59049} a^{12} + \frac{224}{59049} a^{11} + \frac{202}{59049} a^{10} + \frac{286}{59049} a^{9} + \frac{1291}{59049} a^{8} + \frac{9667}{177147} a^{7} - \frac{763}{19683} a^{6} - \frac{1505}{19683} a^{5} + \frac{308}{2187} a^{4} - \frac{161}{2187} a^{3} - \frac{64}{243} a^{2} + \frac{2}{9} a$, $\frac{1}{80956179} a^{20} - \frac{194}{80956179} a^{19} + \frac{83}{8995131} a^{18} + \frac{511}{8995131} a^{17} - \frac{392}{26985393} a^{16} - \frac{320}{26985393} a^{15} - \frac{148874}{80956179} a^{14} + \frac{2860}{80956179} a^{13} - \frac{11372}{8995131} a^{12} + \frac{17207}{8995131} a^{11} - \frac{94582}{26985393} a^{10} + \frac{164555}{26985393} a^{9} - \frac{4438499}{80956179} a^{8} + \frac{3161689}{80956179} a^{7} - \frac{403073}{8995131} a^{6} - \frac{1194917}{8995131} a^{5} - \frac{42281}{999459} a^{4} + \frac{36484}{999459} a^{3} + \frac{1490}{12339} a^{2} - \frac{2668}{12339} a + \frac{201}{457}$, $\frac{1}{2940771999750793437643204689103254079356106567932305488934739990177} a^{21} + \frac{1067724782588981703681506223260899005083777433145746857447}{980257333250264479214401563034418026452035522644101829644913330059} a^{20} + \frac{4584840994833932058075173756513774733125114723821469687207729}{2940771999750793437643204689103254079356106567932305488934739990177} a^{19} - \frac{702741193519552003534265934629441615303705665900258147195651}{36305827157417202933866724556830297276001315653485252949811604817} a^{18} - \frac{70237897618260242331627041226435086042743278084735532347459221}{980257333250264479214401563034418026452035522644101829644913330059} a^{17} + \frac{123905911304344344868724559475254532971222892665199580124206}{12101942385805734311288908185610099092000438551161750983270534939} a^{16} + \frac{165649988832290727150728426349674756314533784662905013378735868}{2940771999750793437643204689103254079356106567932305488934739990177} a^{15} + \frac{418937804845749241762537527998369977651931981910435535995169520}{980257333250264479214401563034418026452035522644101829644913330059} a^{14} - \frac{5451862002652190244020873075073557430083846991552645828838241767}{2940771999750793437643204689103254079356106567932305488934739990177} a^{13} + \frac{2253321157973636889645726903576949462270305289478890095727447}{1355819271438816707073861083035156329809177762993225213893379433} a^{12} + \frac{61300925843461970605952248000832370269684839316648158909372145}{980257333250264479214401563034418026452035522644101829644913330059} a^{11} - \frac{490209669866691723110730662256511213236246850999841869558126648}{108917481472251608801600173670490891828003946960455758849434814451} a^{10} - \frac{1545118528357389356831219256045939149138505868526781287611322861}{2940771999750793437643204689103254079356106567932305488934739990177} a^{9} + \frac{50935668809533911904907864206587767847087410957534779939163382110}{980257333250264479214401563034418026452035522644101829644913330059} a^{8} - \frac{70051471888028129210159880616052433577258273955965085236141458085}{2940771999750793437643204689103254079356106567932305488934739990177} a^{7} + \frac{2253243426624363962941781938530505984505627404825640765818366904}{326752444416754826404800521011472675484011840881367276548304443353} a^{6} + \frac{45508429726784718062657960238002229800954922610936953492055286399}{326752444416754826404800521011472675484011840881367276548304443353} a^{5} + \frac{2185943320968405783573738466039129745163416851088632140038159654}{36305827157417202933866724556830297276001315653485252949811604817} a^{4} - \frac{4711365630773762985141279210173872806990198602553560633413980160}{36305827157417202933866724556830297276001315653485252949811604817} a^{3} - \frac{1597553656934069009620888863724840515692388674527536568173098716}{4033980795268578103762969395203366364000146183720583661090178313} a^{2} + \frac{211596418011513172412938831400414675334658585663465070515172684}{448220088363175344862552155022596262666682909302287073454464257} a - \frac{3091769017428070517396876338510886144733722322291577125903262}{16600744013450938698613042778614676395062329974158780498313491}$
Class group and class number
$C_{89838230198}$, which has order $89838230198$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 285114946276.13544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 11.11.672749994932560009201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{22}$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | $22$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||