Properties

Label 22.0.92168952614...6875.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,5^{11}\cdot 199^{21}$
Root discriminant $349.82$
Ramified primes $5, 199$
Class number $69273608$ (GRH)
Class group $[69273608]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6857181839381, 19526867163395, 20272483083031, 10572689320889, 5010846934880, 1683377741263, 760956148725, 272442102752, 122682543835, 37757317040, 12791899873, 3191438973, 760942580, 165265669, 29311275, 4874907, 825513, 68673, 17203, 300, 204, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 204*x^20 + 300*x^19 + 17203*x^18 + 68673*x^17 + 825513*x^16 + 4874907*x^15 + 29311275*x^14 + 165265669*x^13 + 760942580*x^12 + 3191438973*x^11 + 12791899873*x^10 + 37757317040*x^9 + 122682543835*x^8 + 272442102752*x^7 + 760956148725*x^6 + 1683377741263*x^5 + 5010846934880*x^4 + 10572689320889*x^3 + 20272483083031*x^2 + 19526867163395*x + 6857181839381)
 
gp: K = bnfinit(x^22 - x^21 + 204*x^20 + 300*x^19 + 17203*x^18 + 68673*x^17 + 825513*x^16 + 4874907*x^15 + 29311275*x^14 + 165265669*x^13 + 760942580*x^12 + 3191438973*x^11 + 12791899873*x^10 + 37757317040*x^9 + 122682543835*x^8 + 272442102752*x^7 + 760956148725*x^6 + 1683377741263*x^5 + 5010846934880*x^4 + 10572689320889*x^3 + 20272483083031*x^2 + 19526867163395*x + 6857181839381, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 204 x^{20} + 300 x^{19} + 17203 x^{18} + 68673 x^{17} + 825513 x^{16} + 4874907 x^{15} + 29311275 x^{14} + 165265669 x^{13} + 760942580 x^{12} + 3191438973 x^{11} + 12791899873 x^{10} + 37757317040 x^{9} + 122682543835 x^{8} + 272442102752 x^{7} + 760956148725 x^{6} + 1683377741263 x^{5} + 5010846934880 x^{4} + 10572689320889 x^{3} + 20272483083031 x^{2} + 19526867163395 x + 6857181839381 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-92168952614220241164959742886255742486065996298779296875=-\,5^{11}\cdot 199^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $349.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 199$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(995=5\cdot 199\)
Dirichlet character group:    $\lbrace$$\chi_{995}(1,·)$, $\chi_{995}(259,·)$, $\chi_{995}(261,·)$, $\chi_{995}(711,·)$, $\chi_{995}(74,·)$, $\chi_{995}(461,·)$, $\chi_{995}(579,·)$, $\chi_{995}(534,·)$, $\chi_{995}(409,·)$, $\chi_{995}(921,·)$, $\chi_{995}(284,·)$, $\chi_{995}(736,·)$, $\chi_{995}(734,·)$, $\chi_{995}(416,·)$, $\chi_{995}(994,·)$, $\chi_{995}(934,·)$, $\chi_{995}(874,·)$, $\chi_{995}(494,·)$, $\chi_{995}(61,·)$, $\chi_{995}(501,·)$, $\chi_{995}(121,·)$, $\chi_{995}(586,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{37} a^{13} - \frac{7}{37} a^{12} - \frac{4}{37} a^{11} + \frac{17}{37} a^{10} - \frac{9}{37} a^{9} - \frac{13}{37} a^{8} + \frac{1}{37} a^{7} - \frac{16}{37} a^{6} + \frac{14}{37} a^{5} + \frac{9}{37} a^{4} + \frac{17}{37} a^{3} - \frac{11}{37} a^{2} + \frac{17}{37} a - \frac{16}{37}$, $\frac{1}{37} a^{14} - \frac{16}{37} a^{12} - \frac{11}{37} a^{11} - \frac{1}{37} a^{10} - \frac{2}{37} a^{9} - \frac{16}{37} a^{8} - \frac{9}{37} a^{7} + \frac{13}{37} a^{6} - \frac{4}{37} a^{5} + \frac{6}{37} a^{4} - \frac{3}{37} a^{3} + \frac{14}{37} a^{2} - \frac{8}{37} a - \frac{1}{37}$, $\frac{1}{37} a^{15} - \frac{12}{37} a^{12} + \frac{9}{37} a^{11} + \frac{11}{37} a^{10} - \frac{12}{37} a^{9} + \frac{5}{37} a^{8} - \frac{8}{37} a^{7} - \frac{1}{37} a^{6} + \frac{8}{37} a^{5} - \frac{7}{37} a^{4} - \frac{10}{37} a^{3} + \frac{1}{37} a^{2} + \frac{12}{37} a + \frac{3}{37}$, $\frac{1}{37} a^{16} - \frac{1}{37} a^{12} + \frac{7}{37} a^{10} + \frac{8}{37} a^{9} - \frac{16}{37} a^{8} + \frac{11}{37} a^{7} + \frac{1}{37} a^{6} + \frac{13}{37} a^{5} - \frac{13}{37} a^{4} - \frac{17}{37} a^{3} - \frac{9}{37} a^{2} - \frac{15}{37} a - \frac{7}{37}$, $\frac{1}{37} a^{17} - \frac{7}{37} a^{12} + \frac{3}{37} a^{11} - \frac{12}{37} a^{10} + \frac{12}{37} a^{9} - \frac{2}{37} a^{8} + \frac{2}{37} a^{7} - \frac{3}{37} a^{6} + \frac{1}{37} a^{5} - \frac{8}{37} a^{4} + \frac{8}{37} a^{3} + \frac{11}{37} a^{2} + \frac{10}{37} a - \frac{16}{37}$, $\frac{1}{37} a^{18} - \frac{9}{37} a^{12} - \frac{3}{37} a^{11} - \frac{17}{37} a^{10} + \frac{9}{37} a^{9} - \frac{15}{37} a^{8} + \frac{4}{37} a^{7} + \frac{16}{37} a^{5} - \frac{3}{37} a^{4} - \frac{18}{37} a^{3} + \frac{7}{37} a^{2} - \frac{8}{37} a - \frac{1}{37}$, $\frac{1}{37} a^{19} + \frac{8}{37} a^{12} - \frac{16}{37} a^{11} + \frac{14}{37} a^{10} + \frac{15}{37} a^{9} - \frac{2}{37} a^{8} + \frac{9}{37} a^{7} - \frac{17}{37} a^{6} + \frac{12}{37} a^{5} - \frac{11}{37} a^{4} + \frac{12}{37} a^{3} + \frac{4}{37} a^{2} + \frac{4}{37} a + \frac{4}{37}$, $\frac{1}{703} a^{20} - \frac{5}{703} a^{19} - \frac{6}{703} a^{18} - \frac{8}{703} a^{17} - \frac{5}{703} a^{16} + \frac{5}{703} a^{15} - \frac{9}{703} a^{14} + \frac{8}{703} a^{13} - \frac{153}{703} a^{12} + \frac{47}{703} a^{11} - \frac{272}{703} a^{10} - \frac{198}{703} a^{9} - \frac{107}{703} a^{8} - \frac{10}{37} a^{7} + \frac{68}{703} a^{6} - \frac{90}{703} a^{5} - \frac{97}{703} a^{4} + \frac{198}{703} a^{3} + \frac{3}{19} a^{2} + \frac{307}{703} a - \frac{49}{703}$, $\frac{1}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{21} - \frac{4425184487055602205246693836934202464994066111406841244174995914931423751565754989675882950155634500976485014304078979720132345}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{20} + \frac{239154529723247706843488925917816209091486534133143112670145617374589228465416848458775120604248845073388354144113889414304766162}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{19} - \frac{477737430853878500758192509480070287289143063600108878466041484017814084399884199553103435659769505021205136990890368289484009949}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{18} + \frac{62378220269287751369070994148635755320381696433834021665348552172710399754777079602183705764144078660854105092149010636713245767}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{17} + \frac{20722266739687190701003246474085228853554200644260692090144835969815310393238258611243882780862871031750058085692747209303636984}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{16} + \frac{54243101729780409685598621513869763355391198039454283633879187490264514821138438616812860849862751919120729644425895550050417693}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{15} - \frac{525446740731665297433050192691084328271704704653325368859603851564307358595497063050249885074339935090584517309124642771192737644}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{14} + \frac{264471087869342767330213331132757372704387813918198617619751043848504367488068718014684937370075037704957689121779672817869623986}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{13} + \frac{17245539332879198423050890614783952263517569809439148077973139930945771285925389479064462427803878168206483540458945444177660190100}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{12} - \frac{15631578890150973066767696404165472653153739292902866102393669953676030785529238791251075864694514642406889457908739587455206543090}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{11} + \frac{7894502190257844023861594648861144446422492999723114425186615555153047873865644784243383104307541019034943629205871853633919508720}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{10} - \frac{15368982193295780462963831684426256771576724607705263609059728776176773023731849673643702912716999414957549670132674794346876470507}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{9} - \frac{15682895283939995285819061698108891438654612309359855106194322704842143217266437860905404817142222730689629047701738470894290562306}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{8} + \frac{19702940307062493305578641434801373005958699601737850910661652902538331746027133900918580981309735502883683744779916954737998365422}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{7} - \frac{319602008437043532866288667550175244947292588453753391152522815630560603879484685122257165416532121680756436902348733361640642032}{917976559064588494152962712673397050103740175360509899777985569284857641763965649774633305962778455148595216041635362924814745953} a^{6} - \frac{3172768341985343727790935907728249868932235172721536644895909734140517129188271248472236416561080096825864377218351959510285548206}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{5} + \frac{13414606141573686143776457118408776465724517252061868325834380860475925247649185405123430429233675511841895164313351039527963290004}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{4} + \frac{9131597083610828698053989812917450012904801021565341864058011420002611271199299482923053594672937695755162620834977633263035159214}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{3} - \frac{15733754159196541910624992588433945012615481948989013646646204448372939041097551362185430604109249095842450781514301454112065629327}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a^{2} - \frac{13178807837739850674768857197391416201587846823109604882796978538130673081673452926069472058415550483820392038187046784026898268943}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979} a + \frac{18060074743930781277518710903071106458188990879751697895320740389384355479308695629370555121019022995352300844011692035224895788683}{39472992039777305248577396644956073154460827540501925690453379479248878595850522940309232156399473571389594289790320605767034075979}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{69273608}$, which has order $69273608$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 117135822355.96071 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-995}) \), 11.11.97393677359695041798001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ R $22$ $22$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}$ $22$ ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ $22$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
199Data not computed