Normalized defining polynomial
\( x^{22} - 11 x^{21} - 33 x^{20} + 649 x^{19} + 77 x^{18} - 16599 x^{17} + 18073 x^{16} + 222574 x^{15} - 351846 x^{14} - 1913648 x^{13} + 3638591 x^{12} + 10421760 x^{11} - 18077708 x^{10} - 52267061 x^{9} + 88950411 x^{8} + 112398451 x^{7} - 87574498 x^{6} - 406562805 x^{5} + 515905885 x^{4} - 341803154 x^{3} + 860884596 x^{2} - 1268438105 x + 5519069021 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-894923364032259692352641685868501220854496476917943=-\,7^{11}\cdot 11^{40}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $207.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(847=7\cdot 11^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{847}(1,·)$, $\chi_{847}(386,·)$, $\chi_{847}(771,·)$, $\chi_{847}(265,·)$, $\chi_{847}(650,·)$, $\chi_{847}(78,·)$, $\chi_{847}(463,·)$, $\chi_{847}(342,·)$, $\chi_{847}(727,·)$, $\chi_{847}(155,·)$, $\chi_{847}(540,·)$, $\chi_{847}(34,·)$, $\chi_{847}(419,·)$, $\chi_{847}(804,·)$, $\chi_{847}(232,·)$, $\chi_{847}(617,·)$, $\chi_{847}(111,·)$, $\chi_{847}(496,·)$, $\chi_{847}(309,·)$, $\chi_{847}(694,·)$, $\chi_{847}(188,·)$, $\chi_{847}(573,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{6} + \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{7} + \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} + \frac{2}{9} a^{4} + \frac{1}{3} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{2}{9} a^{5} + \frac{1}{3} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{16} + \frac{4}{81} a^{15} + \frac{2}{81} a^{14} + \frac{1}{27} a^{13} + \frac{2}{81} a^{12} + \frac{11}{81} a^{11} + \frac{11}{81} a^{10} + \frac{10}{81} a^{9} - \frac{1}{9} a^{8} - \frac{8}{81} a^{7} - \frac{11}{81} a^{6} + \frac{20}{81} a^{5} + \frac{25}{81} a^{4} + \frac{7}{27} a^{3} - \frac{20}{81} a^{2} - \frac{32}{81} a + \frac{17}{81}$, $\frac{1}{81} a^{17} + \frac{4}{81} a^{15} + \frac{4}{81} a^{14} - \frac{1}{81} a^{13} + \frac{1}{27} a^{12} - \frac{2}{27} a^{11} + \frac{11}{81} a^{10} - \frac{4}{81} a^{9} + \frac{10}{81} a^{8} - \frac{2}{27} a^{7} - \frac{8}{81} a^{6} + \frac{8}{81} a^{5} + \frac{20}{81} a^{4} + \frac{22}{81} a^{3} + \frac{7}{27} a^{2} + \frac{10}{81} a - \frac{32}{81}$, $\frac{1}{243} a^{18} - \frac{1}{243} a^{17} - \frac{1}{243} a^{16} - \frac{2}{243} a^{15} + \frac{1}{81} a^{14} + \frac{7}{243} a^{13} - \frac{10}{243} a^{12} - \frac{20}{243} a^{11} + \frac{38}{243} a^{10} - \frac{2}{27} a^{9} + \frac{20}{243} a^{8} + \frac{20}{243} a^{7} + \frac{17}{243} a^{6} + \frac{56}{243} a^{5} - \frac{2}{81} a^{4} + \frac{119}{243} a^{3} - \frac{55}{243} a^{2} + \frac{100}{243} a + \frac{82}{243}$, $\frac{1}{243} a^{19} + \frac{1}{243} a^{17} - \frac{2}{243} a^{15} + \frac{1}{243} a^{14} + \frac{1}{81} a^{13} + \frac{4}{81} a^{12} - \frac{7}{81} a^{11} + \frac{5}{243} a^{10} - \frac{7}{243} a^{9} + \frac{16}{243} a^{8} - \frac{32}{243} a^{7} + \frac{16}{243} a^{6} + \frac{80}{243} a^{5} - \frac{49}{243} a^{4} - \frac{50}{243} a^{3} + \frac{34}{81} a^{2} + \frac{89}{243} a + \frac{37}{243}$, $\frac{1}{333153} a^{20} - \frac{661}{333153} a^{19} - \frac{22}{12339} a^{18} + \frac{11}{4113} a^{17} - \frac{1351}{333153} a^{16} + \frac{5936}{333153} a^{15} + \frac{2762}{333153} a^{14} + \frac{224}{333153} a^{13} - \frac{968}{333153} a^{12} + \frac{21070}{333153} a^{11} - \frac{40127}{333153} a^{10} + \frac{11363}{333153} a^{9} + \frac{8203}{333153} a^{8} - \frac{31358}{333153} a^{7} + \frac{48305}{333153} a^{6} + \frac{115483}{333153} a^{5} - \frac{92614}{333153} a^{4} + \frac{35660}{111051} a^{3} - \frac{30712}{111051} a^{2} - \frac{155513}{333153} a - \frac{164918}{333153}$, $\frac{1}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{21} - \frac{740565514821052214394370527896124113170149513975659870571107498982595616}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{20} - \frac{1996597580934664376664555471943685171200751880130786881150001219123458016562}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{19} - \frac{318700110478179272698685719335541187290159860560454016464607933495194868504}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a^{18} + \frac{6406740217452095504867200425778322473067536568147603880315520952415606986309}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{17} - \frac{318712206428920412952459083426861562847896743794591114776480163872810066688}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a^{16} + \frac{3359787791623016504896375965638724170753890746318985585894480071207707114149}{125601392862501735277952844530590306688623676000123902940795304020206044916683} a^{15} - \frac{6119509672192055763603224552220860680857782955712140664128863087204156294099}{125601392862501735277952844530590306688623676000123902940795304020206044916683} a^{14} - \frac{10110242256252382797514758882502691788980178071809389853168443377640181351482}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{13} - \frac{7036091780627632665663738615247263445351522021055457650276390882698659063932}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a^{12} - \frac{59536959328609504518465932260007401284808270127893699035862896375311403166877}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a^{11} - \frac{64718016490303598480054649426194948958873670899382502475863156214085316910920}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{10} + \frac{115106664837458048137638604005874133477106937752303310649565897656451915517502}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{9} + \frac{44157115038411027549796763684110211810817890781453556468040235812438843368618}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a^{8} - \frac{57795164752580034348719713526884872829543824875852777416495800465741096477806}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{7} - \frac{160174685824622642328434971621690429189150068562904628716331809621865453184930}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{6} - \frac{117019770405701373257724337952523233558671113982131852972857097355327569546452}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{5} - \frac{488717726364997732585495759183423255186619161180885468652479761105948722347745}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{4} - \frac{12762796452217428194815106417242083896864542509383001983992204630339832446555}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a^{3} - \frac{467331954833779719961217281013933758504646734837452210691001730057803558555444}{1130412535762515617501575600775312760197613084001115126467157736181854404250147} a^{2} - \frac{174738974291594206062627845121500869090717078833252494341526162185731777169672}{376804178587505205833858533591770920065871028000371708822385912060618134750049} a + \frac{426895904337018846983083206851944578964715854122106428121184854677397701242960}{1130412535762515617501575600775312760197613084001115126467157736181854404250147}$
Class group and class number
$C_{173041}$, which has order $173041$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 285114946276.13544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 11.11.672749994932560009201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}$ | $22$ | R | R | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.11.20.9 | $x^{11} - 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| 11.11.20.9 | $x^{11} - 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ | |