Properties

Label 22.0.89223029822...3207.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,11^{41}\cdot 13^{11}$
Root discriminant $314.59$
Ramified primes $11, 13$
Class number $38227153810$ (GRH)
Class group $[38227153810]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14798920078539, -3135184653051, 2797610392467, 1357934108949, 3125769821658, 2829530153934, 1909585780575, 903013471261, 429913692021, 118200277272, 46886008312, 8683357308, 2797111350, 312942256, 112890888, 4754706, 2904550, 22044, 42933, -44, 330, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 330*x^20 - 44*x^19 + 42933*x^18 + 22044*x^17 + 2904550*x^16 + 4754706*x^15 + 112890888*x^14 + 312942256*x^13 + 2797111350*x^12 + 8683357308*x^11 + 46886008312*x^10 + 118200277272*x^9 + 429913692021*x^8 + 903013471261*x^7 + 1909585780575*x^6 + 2829530153934*x^5 + 3125769821658*x^4 + 1357934108949*x^3 + 2797610392467*x^2 - 3135184653051*x + 14798920078539)
 
gp: K = bnfinit(x^22 + 330*x^20 - 44*x^19 + 42933*x^18 + 22044*x^17 + 2904550*x^16 + 4754706*x^15 + 112890888*x^14 + 312942256*x^13 + 2797111350*x^12 + 8683357308*x^11 + 46886008312*x^10 + 118200277272*x^9 + 429913692021*x^8 + 903013471261*x^7 + 1909585780575*x^6 + 2829530153934*x^5 + 3125769821658*x^4 + 1357934108949*x^3 + 2797610392467*x^2 - 3135184653051*x + 14798920078539, 1)
 

Normalized defining polynomial

\( x^{22} + 330 x^{20} - 44 x^{19} + 42933 x^{18} + 22044 x^{17} + 2904550 x^{16} + 4754706 x^{15} + 112890888 x^{14} + 312942256 x^{13} + 2797111350 x^{12} + 8683357308 x^{11} + 46886008312 x^{10} + 118200277272 x^{9} + 429913692021 x^{8} + 903013471261 x^{7} + 1909585780575 x^{6} + 2829530153934 x^{5} + 3125769821658 x^{4} + 1357934108949 x^{3} + 2797610392467 x^{2} - 3135184653051 x + 14798920078539 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-8922302982217185011636920905359755379521162753565903207=-\,11^{41}\cdot 13^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $314.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1573=11^{2}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1573}(1,·)$, $\chi_{1573}(1286,·)$, $\chi_{1573}(1288,·)$, $\chi_{1573}(714,·)$, $\chi_{1573}(716,·)$, $\chi_{1573}(142,·)$, $\chi_{1573}(144,·)$, $\chi_{1573}(1429,·)$, $\chi_{1573}(1431,·)$, $\chi_{1573}(857,·)$, $\chi_{1573}(859,·)$, $\chi_{1573}(285,·)$, $\chi_{1573}(287,·)$, $\chi_{1573}(1572,·)$, $\chi_{1573}(1000,·)$, $\chi_{1573}(1002,·)$, $\chi_{1573}(428,·)$, $\chi_{1573}(430,·)$, $\chi_{1573}(1143,·)$, $\chi_{1573}(1145,·)$, $\chi_{1573}(571,·)$, $\chi_{1573}(573,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{2}{27} a^{5} + \frac{4}{27} a^{4} - \frac{1}{27} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} + \frac{2}{27} a^{5} - \frac{7}{81} a^{4} - \frac{1}{27} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{11} + \frac{1}{27} a^{7} + \frac{8}{81} a^{5} - \frac{4}{27} a^{3}$, $\frac{1}{2187} a^{12} + \frac{1}{243} a^{11} - \frac{7}{2187} a^{10} - \frac{1}{729} a^{9} - \frac{10}{729} a^{8} + \frac{1}{27} a^{7} + \frac{68}{2187} a^{6} + \frac{8}{81} a^{5} + \frac{4}{2187} a^{4} + \frac{70}{729} a^{3} + \frac{41}{243} a^{2} - \frac{7}{81} a$, $\frac{1}{2187} a^{13} - \frac{7}{2187} a^{11} + \frac{2}{729} a^{10} - \frac{1}{729} a^{9} + \frac{1}{81} a^{8} + \frac{68}{2187} a^{7} - \frac{8}{243} a^{6} - \frac{77}{2187} a^{5} - \frac{86}{729} a^{4} + \frac{20}{243} a^{3} - \frac{31}{81} a^{2} - \frac{2}{9} a$, $\frac{1}{2187} a^{14} - \frac{4}{729} a^{11} + \frac{2}{2187} a^{10} + \frac{2}{729} a^{9} + \frac{20}{2187} a^{8} - \frac{8}{243} a^{7} - \frac{29}{729} a^{6} - \frac{68}{729} a^{5} - \frac{8}{2187} a^{4} - \frac{59}{729} a^{3} - \frac{37}{243} a^{2} + \frac{5}{81} a$, $\frac{1}{6561} a^{15} + \frac{1}{6561} a^{13} - \frac{32}{6561} a^{11} + \frac{4}{729} a^{10} - \frac{19}{6561} a^{9} + \frac{1}{81} a^{8} - \frac{19}{6561} a^{7} - \frac{10}{243} a^{6} - \frac{355}{6561} a^{5} - \frac{100}{729} a^{4} - \frac{106}{729} a^{3} - \frac{35}{81} a^{2} + \frac{11}{81} a$, $\frac{1}{6561} a^{16} + \frac{1}{6561} a^{14} + \frac{1}{6561} a^{12} + \frac{1}{729} a^{11} - \frac{7}{6561} a^{10} - \frac{2}{729} a^{9} - \frac{37}{6561} a^{8} - \frac{10}{243} a^{7} - \frac{55}{6561} a^{6} + \frac{53}{729} a^{5} - \frac{274}{2187} a^{4} - \frac{31}{729} a^{3} - \frac{56}{243} a^{2} + \frac{31}{81} a$, $\frac{1}{59049} a^{17} - \frac{2}{59049} a^{16} + \frac{4}{59049} a^{15} - \frac{2}{59049} a^{14} - \frac{2}{59049} a^{13} - \frac{8}{59049} a^{12} + \frac{272}{59049} a^{11} - \frac{151}{59049} a^{10} + \frac{5}{59049} a^{9} - \frac{880}{59049} a^{8} + \frac{1721}{59049} a^{7} + \frac{1133}{59049} a^{6} - \frac{1549}{19683} a^{5} + \frac{458}{6561} a^{4} + \frac{350}{2187} a^{3} - \frac{16}{729} a^{2} - \frac{76}{243} a$, $\frac{1}{59049} a^{18} - \frac{1}{19683} a^{15} - \frac{2}{19683} a^{14} + \frac{2}{19683} a^{13} + \frac{13}{59049} a^{12} - \frac{79}{19683} a^{11} - \frac{8}{2187} a^{10} - \frac{17}{19683} a^{9} + \frac{230}{19683} a^{8} + \frac{736}{19683} a^{7} - \frac{923}{59049} a^{6} - \frac{2567}{19683} a^{5} + \frac{202}{6561} a^{4} - \frac{254}{2187} a^{3} - \frac{35}{729} a^{2} - \frac{50}{243} a$, $\frac{1}{177147} a^{19} + \frac{1}{177147} a^{18} - \frac{1}{59049} a^{16} - \frac{1}{19683} a^{15} - \frac{8}{177147} a^{13} - \frac{8}{177147} a^{12} + \frac{317}{59049} a^{11} + \frac{325}{59049} a^{10} + \frac{89}{19683} a^{9} + \frac{7}{19683} a^{8} - \frac{551}{177147} a^{7} - \frac{2927}{177147} a^{6} + \frac{2134}{59049} a^{5} + \frac{1444}{19683} a^{4} + \frac{709}{6561} a^{3} + \frac{268}{2187} a^{2} - \frac{137}{729} a$, $\frac{1}{6949653957} a^{20} - \frac{11102}{6949653957} a^{19} - \frac{2926}{772183773} a^{18} - \frac{8051}{2316551319} a^{17} + \frac{52967}{2316551319} a^{16} - \frac{64156}{2316551319} a^{15} + \frac{217789}{6949653957} a^{14} - \frac{459332}{6949653957} a^{13} - \frac{28529}{2316551319} a^{12} + \frac{1730720}{2316551319} a^{11} + \frac{14010373}{2316551319} a^{10} + \frac{2402053}{2316551319} a^{9} + \frac{25440400}{6949653957} a^{8} + \frac{269139370}{6949653957} a^{7} + \frac{86448056}{2316551319} a^{6} + \frac{42313925}{772183773} a^{5} - \frac{13260178}{257394591} a^{4} + \frac{10497737}{85798197} a^{3} - \frac{2956912}{28599399} a^{2} - \frac{2723417}{9533133} a + \frac{4940}{13077}$, $\frac{1}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{21} - \frac{90210102983906519095617858901955468375932258298618696743147796333474508053115267477180073}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{20} - \frac{1859339949040112775263036175659453456244425817056246929513679487237253321197556009065163024730}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{19} - \frac{886443011310693307260937113860369811875681208487346677378234383811377824313102484400988284465}{418099493210491481693555166845468572215351221215321594099508107388650875078628069995320972261149101} a^{18} + \frac{1134942947323854037819513993007048873655041494700446618854751460368142789299319239942768539322}{139366497736830493897851722281822857405117073738440531366502702462883625026209356665106990753716367} a^{17} + \frac{3949445390492798151999037984383552098616602876031992621625262847557413489514623104200158313843}{418099493210491481693555166845468572215351221215321594099508107388650875078628069995320972261149101} a^{16} + \frac{16294579035564136108808520278723072258759333911169965385370403405491612807772572886704094838635}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{15} + \frac{231384611408395308867827342383625866902256789218868990412780596404238055403019538662623654603839}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{14} + \frac{116279307013414969528093766422265637535597834647361674218497750080125847852238524847612678327168}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{13} - \frac{6291900163506415556463946178733142302403584781075385930875731974894412040769880994636332505969}{46455499245610164632617240760607619135039024579480177122167567487627875008736452221702330251238789} a^{12} + \frac{680110024104164330692569053174026291979628684241581430437032922739402961158823808699982027217813}{139366497736830493897851722281822857405117073738440531366502702462883625026209356665106990753716367} a^{11} + \frac{824986873802323859352806914604737410783340932750972557796876103752873508349582918517828454111367}{418099493210491481693555166845468572215351221215321594099508107388650875078628069995320972261149101} a^{10} + \frac{6088907349014673264353599287293276067256661157530779531211931340782729502014552792942883925355058}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{9} + \frac{452964728967809356612370371502805521753592626686793115205054417158635471625232415825781859456523}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{8} - \frac{30043670331451058312464670344695846076923725136754307495792660128002581876085174099553104266753585}{1254298479631474445080665500536405716646053663645964782298524322165952625235884209985962916783447303} a^{7} + \frac{17302602776898523916948418023848916301111185923567371085382375558474010266818319237449634039213297}{418099493210491481693555166845468572215351221215321594099508107388650875078628069995320972261149101} a^{6} + \frac{4541881794608799446680894560050247015405620295818418613570438616583519934897446888481689908699321}{139366497736830493897851722281822857405117073738440531366502702462883625026209356665106990753716367} a^{5} + \frac{6676079854706856743468501695971720787787185320266310321079740654615372216066170409456431824730870}{46455499245610164632617240760607619135039024579480177122167567487627875008736452221702330251238789} a^{4} - \frac{2054489119087337990459886413484197643299700403350640251899477948429700782689015193057078691489985}{15485166415203388210872413586869206378346341526493392374055855829209291669578817407234110083746263} a^{3} - \frac{1166455224676249219313997172395500363766277564129486285603400453451332649086041815707493686389231}{5161722138401129403624137862289735459448780508831130791351951943069763889859605802411370027915421} a^{2} - \frac{208226636545657126655086753806641130074246382938353820962122164400547389154667248293663403436168}{1720574046133709801208045954096578486482926836277043597117317314356587963286535267470456675971807} a - \frac{365326787055904085183832060134654073101195559432320229283337702602359238036033418494642473679}{2360183876726625241711997193548118637150791270613228528281642406524812020969184180343561969783}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{38227153810}$, which has order $38227153810$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 285114946276.13544 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-143}) \), 11.11.672749994932560009201.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/3.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ R R $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ $22$ $22$ $22$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
13Data not computed