Normalized defining polynomial
\( x^{22} - 22 x^{20} + 1419 x^{18} - 5544 x^{17} + 8096 x^{16} - 32296 x^{15} + 175219 x^{14} - 327360 x^{13} + 416306 x^{12} - 2114704 x^{11} + 5575317 x^{10} - 6176808 x^{9} + 12429780 x^{8} - 24020040 x^{7} + 28619052 x^{6} - 19434096 x^{5} + 35863344 x^{4} - 25597440 x^{3} + 11721600 x^{2} - 12672000 x + 11520000 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8850808797378409798254793906469559840075153408=-\,2^{33}\cdot 3^{10}\cdot 11^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{40} a^{11} - \frac{1}{20} a^{9} + \frac{1}{20} a^{8} + \frac{3}{40} a^{7} - \frac{1}{20} a^{5} - \frac{1}{4} a^{4} + \frac{1}{10} a^{3} - \frac{1}{10} a^{2} - \frac{2}{5} a$, $\frac{1}{80} a^{12} + \frac{3}{80} a^{10} + \frac{1}{40} a^{9} + \frac{3}{80} a^{8} - \frac{7}{80} a^{6} - \frac{1}{8} a^{5} + \frac{1}{20} a^{4} + \frac{1}{5} a^{3} - \frac{9}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{13} - \frac{1}{80} a^{11} + \frac{1}{40} a^{10} + \frac{1}{80} a^{9} + \frac{1}{40} a^{8} + \frac{1}{80} a^{7} - \frac{1}{8} a^{6} + \frac{1}{40} a^{5} - \frac{7}{40} a^{4} + \frac{7}{20} a^{3} - \frac{1}{20} a^{2} + \frac{3}{10} a$, $\frac{1}{160} a^{14} - \frac{1}{160} a^{13} - \frac{1}{160} a^{12} - \frac{1}{160} a^{11} + \frac{9}{160} a^{10} + \frac{9}{160} a^{9} + \frac{1}{160} a^{8} - \frac{3}{160} a^{7} - \frac{9}{80} a^{6} + \frac{1}{5} a^{5} - \frac{1}{20} a^{4} + \frac{3}{40} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{15} - \frac{1}{80} a^{11} + \frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{3}{160} a^{7} - \frac{1}{10} a^{5} - \frac{1}{10} a^{4} - \frac{17}{40} a^{3} + \frac{1}{10} a^{2} - \frac{2}{5} a$, $\frac{1}{640} a^{16} - \frac{1}{160} a^{13} - \frac{1}{320} a^{12} + \frac{1}{160} a^{11} - \frac{9}{160} a^{10} - \frac{9}{160} a^{9} - \frac{27}{640} a^{8} - \frac{17}{160} a^{7} + \frac{1}{160} a^{6} + \frac{9}{80} a^{5} - \frac{13}{160} a^{4} - \frac{9}{20} a^{3} - \frac{1}{40} a^{2} + \frac{3}{10} a$, $\frac{1}{1920} a^{17} - \frac{1}{480} a^{15} - \frac{1}{320} a^{13} - \frac{1}{120} a^{11} - \frac{7}{120} a^{10} - \frac{71}{1920} a^{9} + \frac{53}{480} a^{7} + \frac{1}{24} a^{6} - \frac{11}{160} a^{5} - \frac{1}{20} a^{4} + \frac{11}{40} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{38400} a^{18} - \frac{1}{38400} a^{17} + \frac{1}{4800} a^{16} + \frac{7}{9600} a^{15} - \frac{17}{6400} a^{14} + \frac{1}{1280} a^{13} + \frac{1}{300} a^{12} + \frac{19}{1600} a^{11} + \frac{61}{7680} a^{10} + \frac{1679}{38400} a^{9} + \frac{259}{4800} a^{8} + \frac{41}{640} a^{7} + \frac{25}{384} a^{6} - \frac{389}{3200} a^{5} - \frac{69}{800} a^{4} + \frac{3}{32} a^{3} - \frac{13}{200} a^{2} + \frac{1}{20} a$, $\frac{1}{76800} a^{19} + \frac{7}{76800} a^{17} + \frac{3}{6400} a^{16} + \frac{83}{38400} a^{15} - \frac{3}{3200} a^{14} + \frac{79}{38400} a^{13} - \frac{47}{9600} a^{12} - \frac{679}{76800} a^{11} + \frac{1}{75} a^{10} + \frac{1831}{76800} a^{9} - \frac{547}{19200} a^{8} - \frac{103}{960} a^{7} - \frac{631}{9600} a^{6} - \frac{33}{256} a^{5} - \frac{77}{800} a^{4} - \frac{717}{1600} a^{3} - \frac{183}{400} a^{2} - \frac{19}{40} a - \frac{1}{2}$, $\frac{1}{8140800} a^{20} - \frac{7}{1356800} a^{19} + \frac{3}{542720} a^{18} + \frac{193}{1017600} a^{17} + \frac{1759}{4070400} a^{16} + \frac{653}{407040} a^{15} + \frac{8293}{4070400} a^{14} - \frac{157}{508800} a^{13} + \frac{419}{2713600} a^{12} + \frac{1093}{271360} a^{11} + \frac{435373}{8140800} a^{10} + \frac{41159}{1017600} a^{9} + \frac{37309}{1017600} a^{8} - \frac{7651}{169600} a^{7} + \frac{149239}{2035200} a^{6} - \frac{4287}{169600} a^{5} - \frac{18291}{169600} a^{4} - \frac{1629}{5300} a^{3} + \frac{2831}{21200} a^{2} + \frac{1}{106} a + \frac{22}{53}$, $\frac{1}{6574185038221687915367658573118984325696820676279630848000} a^{21} - \frac{18897348414737041662043781477335846893222692034527}{438279002548112527691177238207932288379788045085308723200} a^{20} + \frac{13646165252151517815279065827499298609141502611728961}{2191395012740562638455886191039661441898940225426543616000} a^{19} + \frac{148891201033632954030865497659430646426549188398499}{438279002548112527691177238207932288379788045085308723200} a^{18} - \frac{177883894691880384228262101413134602767424598218387791}{1095697506370281319227943095519830720949470112713271808000} a^{17} - \frac{389913773852635172913072656814935342589599681527089589}{1095697506370281319227943095519830720949470112713271808000} a^{16} + \frac{4055237513110437740637205597446280883549128587327764423}{3287092519110843957683829286559492162848410338139815424000} a^{15} - \frac{6075928421556255397325192749674553361007734268226204043}{3287092519110843957683829286559492162848410338139815424000} a^{14} - \frac{11662320036392307963575321068317240927274559630297325837}{2191395012740562638455886191039661441898940225426543616000} a^{13} + \frac{719249444803296092878544958424428261426905583008477323}{1314837007644337583073531714623796865139364135255926169600} a^{12} - \frac{47070518110970720684999978952304649742146590010752705789}{6574185038221687915367658573118984325696820676279630848000} a^{11} - \frac{307175856255323747495200013031231302617274833224154847939}{6574185038221687915367658573118984325696820676279630848000} a^{10} - \frac{15054828339540081866166897109919552373835074281501187}{17120273537035645612936610867497355014835470511144872000} a^{9} - \frac{27473611858318043560139186479981234631464820088933778151}{821773129777710989420957321639873040712102584534953856000} a^{8} + \frac{23239250043325353281762495902909530426887031473574700231}{328709251911084395768382928655949216284841033813981542400} a^{7} + \frac{28063215826710999458641223594122976063724943655666399071}{328709251911084395768382928655949216284841033813981542400} a^{6} + \frac{14955617421840664427570061700992317225855187614335760787}{68481094148142582451746443469989420059341882044579488000} a^{5} - \frac{2389693492369201877870303476949199269470318767116784367}{136962188296285164903492886939978840118683764089158976000} a^{4} - \frac{2876520371381624751176679622509047113600007736747404259}{17120273537035645612936610867497355014835470511144872000} a^{3} - \frac{18426322084884168547535407154303238485177424577532927}{3424054707407129122587322173499471002967094102228974400} a^{2} - \frac{30841386824168758921902682296692449374051949819283401}{85601367685178228064683054337486775074177352555724360} a - \frac{2982824835174687300091392830400090628582773326734973}{8560136768517822806468305433748677507417735255572436}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 493113388733000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1210 |
| The 31 conjugacy class representatives for t22n12 |
| Character table for t22n12 is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}$ | $22$ | R | $22$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.11.12.1 | $x^{11} + 88 x^{2} + 11$ | $11$ | $1$ | $12$ | $C_{11}:C_5$ | $[6/5]_{5}$ |
| 11.11.18.4 | $x^{11} + 88 x^{8} + 11$ | $11$ | $1$ | $18$ | $C_{11}:C_5$ | $[9/5]_{5}$ |