Normalized defining polynomial
\( x^{22} - 6 x^{21} + 54 x^{20} - 220 x^{19} + 704 x^{18} - 1529 x^{17} + 2684 x^{16} - 2816 x^{15} + 935 x^{14} + 6919 x^{13} - 18469 x^{12} + 32934 x^{11} - 31603 x^{10} + 13915 x^{9} + 32791 x^{8} - 80344 x^{7} + 138424 x^{6} - 164197 x^{5} + 132495 x^{4} - 44770 x^{3} + 20691 x^{2} - 44286 x + 23837 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-831107638802333745804311925084476212698528768=-\,2^{10}\cdot 3^{10}\cdot 11^{18}\cdot 47^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{5}{11} a^{11} - \frac{1}{11} a^{10}$, $\frac{1}{22} a^{13} - \frac{1}{22} a^{12} - \frac{9}{22} a^{11} - \frac{5}{22} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{14} - \frac{4}{11} a^{11} - \frac{2}{11} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{22} a^{15} - \frac{4}{11} a^{11} + \frac{3}{22} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{44} a^{16} - \frac{1}{44} a^{14} - \frac{1}{22} a^{12} - \frac{3}{44} a^{11} - \frac{1}{22} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{132} a^{17} + \frac{1}{132} a^{16} - \frac{1}{44} a^{15} - \frac{1}{44} a^{14} + \frac{1}{66} a^{13} + \frac{1}{44} a^{12} - \frac{37}{132} a^{11} + \frac{1}{132} a^{10} + \frac{1}{4} a^{9} - \frac{5}{12} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{5}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a - \frac{5}{12}$, $\frac{1}{132} a^{18} - \frac{1}{132} a^{16} + \frac{1}{66} a^{14} + \frac{1}{132} a^{13} + \frac{1}{66} a^{12} + \frac{5}{132} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{264} a^{19} - \frac{1}{264} a^{18} + \frac{1}{132} a^{16} + \frac{5}{264} a^{15} + \frac{1}{132} a^{14} + \frac{1}{88} a^{13} - \frac{1}{44} a^{12} - \frac{1}{3} a^{11} - \frac{23}{66} a^{10} - \frac{1}{24} a^{9} + \frac{1}{24} a^{8} - \frac{11}{24} a^{7} - \frac{1}{6} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{5}{24} a^{3} - \frac{7}{24} a^{2} - \frac{3}{8} a + \frac{5}{24}$, $\frac{1}{264} a^{20} - \frac{1}{264} a^{18} - \frac{1}{264} a^{16} + \frac{1}{264} a^{15} + \frac{5}{264} a^{14} + \frac{5}{264} a^{13} - \frac{1}{66} a^{12} - \frac{13}{66} a^{11} + \frac{9}{88} a^{10} - \frac{1}{2} a^{8} - \frac{5}{24} a^{7} - \frac{3}{8} a^{6} - \frac{5}{24} a^{5} + \frac{7}{24} a^{4} + \frac{1}{4} a^{3} - \frac{1}{6} a^{2} + \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{13520404791967437935385843170251623988848} a^{21} + \frac{13795040303673563702142072898959849007}{13520404791967437935385843170251623988848} a^{20} + \frac{6468671035496743218837192828128363935}{13520404791967437935385843170251623988848} a^{19} + \frac{830213552963026494129252615963771807}{409709236120225391981389186977321939056} a^{18} + \frac{1537867203477529220160356742101171605}{409709236120225391981389186977321939056} a^{17} - \frac{153118532740477350664780030927121777}{307281927090169043986041890232991454292} a^{16} - \frac{2008536412494016703508010558636961297}{614563854180338087972083780465982908584} a^{15} + \frac{148907055887421803787885750201169939}{307281927090169043986041890232991454292} a^{14} - \frac{7592764527059078406576306004657771247}{409709236120225391981389186977321939056} a^{13} + \frac{6225080772607049491963747898263179967}{614563854180338087972083780465982908584} a^{12} + \frac{43898135692727028866254848278401251715}{1229127708360676175944167560931965817168} a^{11} + \frac{197452904973205511350933858626583257627}{409709236120225391981389186977321939056} a^{10} - \frac{250822209463013462737139889303985845661}{614563854180338087972083780465982908584} a^{9} - \frac{47718195681279853853476515947084069611}{111738882578243288722197050993815074288} a^{8} + \frac{7472831212980680664867744751820195513}{27934720644560822180549262748453768572} a^{7} + \frac{5210524619954889103714586319920718657}{18623147096373881453699508498969179048} a^{6} + \frac{750398304787555729019704949194033198}{2327893387046735181712438562371147381} a^{5} + \frac{9332533766090439161586928998416001755}{37246294192747762907399016997938358096} a^{4} + \frac{2167853260717908813705405542182665113}{55869441289121644361098525496907537144} a^{3} + \frac{1902581507339679666484042424558858465}{9311573548186940726849754249484589524} a^{2} + \frac{901370381622073810543798663792520591}{111738882578243288722197050993815074288} a + \frac{8692599621395452625317191142299960229}{111738882578243288722197050993815074288}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49111075804800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12100 |
| The 49 conjugacy class representatives for t22n25 |
| Character table for t22n25 is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | R | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.11.10.1 | $x^{11} - 2$ | $11$ | $1$ | $10$ | $F_{11}$ | $[\ ]_{11}^{10}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.10.5.2 | $x^{10} - 4879681 x^{2} + 688035021$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 47.10.5.2 | $x^{10} - 4879681 x^{2} + 688035021$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |