Normalized defining polynomial
\( x^{22} - 4 x^{21} + 10 x^{20} - 22 x^{19} + 47 x^{18} - 79 x^{17} + 124 x^{16} - 169 x^{15} + 213 x^{14} - 229 x^{13} + 259 x^{12} - 192 x^{11} + 188 x^{10} - 90 x^{9} + 134 x^{8} - 14 x^{7} + 62 x^{6} - 19 x^{5} + 22 x^{4} - 12 x^{3} + 3 x^{2} - x + 1 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-75348325135501798832991875\)\(\medspace = -\,5^{4}\cdot 7^{6}\cdot 83^{5}\cdot 127^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $15.00$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 7, 83, 127$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{38684901145035697093} a^{21} + \frac{4158653352631523301}{38684901145035697093} a^{20} - \frac{4769917726248983934}{38684901145035697093} a^{19} - \frac{10880675356096624562}{38684901145035697093} a^{18} - \frac{7076018398952020730}{38684901145035697093} a^{17} + \frac{5605777389784810543}{38684901145035697093} a^{16} + \frac{4222066328566324892}{38684901145035697093} a^{15} - \frac{17115466742232371021}{38684901145035697093} a^{14} - \frac{7460735298155082604}{38684901145035697093} a^{13} + \frac{4333093716790019025}{38684901145035697093} a^{12} + \frac{9614663646952949114}{38684901145035697093} a^{11} - \frac{16991771579916284516}{38684901145035697093} a^{10} + \frac{15864422041184470808}{38684901145035697093} a^{9} - \frac{4091092059952229266}{38684901145035697093} a^{8} - \frac{12111089983937647124}{38684901145035697093} a^{7} - \frac{18225494964001253485}{38684901145035697093} a^{6} + \frac{10984685458960560774}{38684901145035697093} a^{5} - \frac{14027439762782253928}{38684901145035697093} a^{4} - \frac{5887569871314779704}{38684901145035697093} a^{3} - \frac{596881066684849203}{38684901145035697093} a^{2} - \frac{9692329526204238675}{38684901145035697093} a - \frac{952876648272404121}{38684901145035697093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 7059.77912901 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 40874803200 |
The 400 conjugacy class representatives for t22n52 are not computed |
Character table for t22n52 is not computed |
Intermediate fields
11.3.136113034225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 44 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $22$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | R | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
$7$ | 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
$83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
83.5.0.1 | $x^{5} - x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
83.5.0.1 | $x^{5} - x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
83.6.5.2 | $x^{6} + 249$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
127 | Data not computed |