Normalized defining polynomial
\( x^{22} + 178 x^{20} + 12104 x^{18} + 412248 x^{16} + 7832000 x^{14} + 86100736 x^{12} + 542401600 x^{10} + 1874827008 x^{8} + 3411995136 x^{6} + 3194544640 x^{4} + 1447148544 x^{2} + 249530368 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-743327151318017467503714837392191185817512378892288=-\,2^{33}\cdot 89^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $205.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(712=2^{3}\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{712}(1,·)$, $\chi_{712}(259,·)$, $\chi_{712}(601,·)$, $\chi_{712}(449,·)$, $\chi_{712}(139,·)$, $\chi_{712}(11,·)$, $\chi_{712}(401,·)$, $\chi_{712}(467,·)$, $\chi_{712}(203,·)$, $\chi_{712}(153,·)$, $\chi_{712}(217,·)$, $\chi_{712}(667,·)$, $\chi_{712}(97,·)$, $\chi_{712}(355,·)$, $\chi_{712}(105,·)$, $\chi_{712}(619,·)$, $\chi_{712}(625,·)$, $\chi_{712}(235,·)$, $\chi_{712}(251,·)$, $\chi_{712}(121,·)$, $\chi_{712}(443,·)$, $\chi_{712}(345,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{18944} a^{19} - \frac{1}{2368} a^{17} - \frac{3}{2368} a^{15} - \frac{7}{2368} a^{13} + \frac{3}{296} a^{11} + \frac{1}{296} a^{9} - \frac{11}{296} a^{7} - \frac{3}{74} a^{5} + \frac{3}{37} a^{3} - \frac{5}{37} a$, $\frac{1}{578679728652378903373025806959616} a^{20} + \frac{30196258937315018612460416715}{144669932163094725843256451739904} a^{18} - \frac{7167019085376803714833586781}{9041870760193420365203528233744} a^{16} - \frac{212754313462033386859526894341}{72334966081547362921628225869952} a^{14} - \frac{299307107707611056087291351}{89523472873202181833698299344} a^{12} - \frac{226412214882176503970265119967}{18083741520386840730407056467488} a^{10} - \frac{48772164136066661728258885697}{2260467690048355091300882058436} a^{8} + \frac{105817446868772446636931793063}{4520935380096710182601764116872} a^{6} - \frac{46696014175742546069421026205}{565116922512088772825220514609} a^{4} - \frac{128846533052382569398229622575}{1130233845024177545650441029218} a^{2} - \frac{3033044518664110085629264282}{15273430338164561427708662557}$, $\frac{1}{578679728652378903373025806959616} a^{21} - \frac{350601739014104242956908399}{144669932163094725843256451739904} a^{19} + \frac{506650703299234857054692236}{565116922512088772825220514609} a^{17} + \frac{153808014653916087405481007027}{72334966081547362921628225869952} a^{15} - \frac{2558227173835207123847957117}{358093891492808727334793197376} a^{13} + \frac{170696973910102093150160106515}{18083741520386840730407056467488} a^{11} + \frac{247840823262505634490515671365}{9041870760193420365203528233744} a^{9} + \frac{106365729617962188315446215481}{2260467690048355091300882058436} a^{7} + \frac{44944567853244822496830949137}{565116922512088772825220514609} a^{5} + \frac{34854030671878364580991495333}{565116922512088772825220514609} a^{3} + \frac{193245959572719155385890472706}{565116922512088772825220514609} a$
Class group and class number
$C_{25518776}$, which has order $25518776$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-178}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | $22$ | $22$ | $22$ | $22$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89 | Data not computed | ||||||