Properties

Label 22.0.71980792679...0000.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,2^{33}\cdot 5^{11}\cdot 23^{20}$
Root discriminant $109.39$
Ramified primes $2, 5, 23$
Class number $17310766$ (GRH)
Class group $[17310766]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![634556225161, -90650889312, 437292880806, -57845366150, 145074301925, -17679217442, 30545809231, -3404345062, 4533809731, -457441488, 498358184, -44873920, 41456020, -3263164, 2616392, -174450, 123265, -6608, 4154, -162, 91, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 91*x^20 - 162*x^19 + 4154*x^18 - 6608*x^17 + 123265*x^16 - 174450*x^15 + 2616392*x^14 - 3263164*x^13 + 41456020*x^12 - 44873920*x^11 + 498358184*x^10 - 457441488*x^9 + 4533809731*x^8 - 3404345062*x^7 + 30545809231*x^6 - 17679217442*x^5 + 145074301925*x^4 - 57845366150*x^3 + 437292880806*x^2 - 90650889312*x + 634556225161)
 
gp: K = bnfinit(x^22 - 2*x^21 + 91*x^20 - 162*x^19 + 4154*x^18 - 6608*x^17 + 123265*x^16 - 174450*x^15 + 2616392*x^14 - 3263164*x^13 + 41456020*x^12 - 44873920*x^11 + 498358184*x^10 - 457441488*x^9 + 4533809731*x^8 - 3404345062*x^7 + 30545809231*x^6 - 17679217442*x^5 + 145074301925*x^4 - 57845366150*x^3 + 437292880806*x^2 - 90650889312*x + 634556225161, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} + 91 x^{20} - 162 x^{19} + 4154 x^{18} - 6608 x^{17} + 123265 x^{16} - 174450 x^{15} + 2616392 x^{14} - 3263164 x^{13} + 41456020 x^{12} - 44873920 x^{11} + 498358184 x^{10} - 457441488 x^{9} + 4533809731 x^{8} - 3404345062 x^{7} + 30545809231 x^{6} - 17679217442 x^{5} + 145074301925 x^{4} - 57845366150 x^{3} + 437292880806 x^{2} - 90650889312 x + 634556225161 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-719807926798998083647106533713510400000000000=-\,2^{33}\cdot 5^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $109.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(920=2^{3}\cdot 5\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{920}(1,·)$, $\chi_{920}(259,·)$, $\chi_{920}(841,·)$, $\chi_{920}(139,·)$, $\chi_{920}(499,·)$, $\chi_{920}(721,·)$, $\chi_{920}(899,·)$, $\chi_{920}(121,·)$, $\chi_{920}(601,·)$, $\chi_{920}(859,·)$, $\chi_{920}(361,·)$, $\chi_{920}(219,·)$, $\chi_{920}(81,·)$, $\chi_{920}(41,·)$, $\chi_{920}(561,·)$, $\chi_{920}(579,·)$, $\chi_{920}(179,·)$, $\chi_{920}(59,·)$, $\chi_{920}(739,·)$, $\chi_{920}(761,·)$, $\chi_{920}(441,·)$, $\chi_{920}(699,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} - \frac{12}{47} a^{19} + \frac{6}{47} a^{18} - \frac{18}{47} a^{17} + \frac{2}{47} a^{16} + \frac{23}{47} a^{15} + \frac{2}{47} a^{14} - \frac{21}{47} a^{13} - \frac{16}{47} a^{12} - \frac{1}{47} a^{11} - \frac{1}{47} a^{10} + \frac{15}{47} a^{9} - \frac{10}{47} a^{8} + \frac{4}{47} a^{7} - \frac{19}{47} a^{6} - \frac{3}{47} a^{5} + \frac{10}{47} a^{4} + \frac{17}{47} a^{3} - \frac{11}{47} a^{2} - \frac{4}{47} a - \frac{11}{47}$, $\frac{1}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{21} - \frac{296491381721015873797890745057498804532165777238023340552943571449519454538144719366805}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{20} + \frac{19554908851490182321530143584937367046219623757841943098662858692909698686307647088165848}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{19} - \frac{15091307421535785085675357101971114646260556709184157110581215209210177076638453890355857}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{18} - \frac{9410541746094897712774243432657612434710873972188204933367780346290777782173305871787470}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{17} + \frac{15559414016218835120128549114460190002537770295415025861311559577608805696385607635979901}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{16} - \frac{10684733073511142452638522630025855627857225563236975186399287620113272221090084540125213}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{15} - \frac{18267390642635339220528803084495618172343500638439148270603209645500226841096571746367640}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{14} + \frac{19603767620137090950896317490440622848082403124179184362474927879695171778910139220662106}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{13} + \frac{19639149402397160471733207190932289165152716923832955152748327904771662608702345140484256}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{12} - \frac{24454698113477287826544198019657652948671355961792980291314680155413503158395594016229924}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{11} - \frac{8260275309260742060674952592829003155076142322073373376697339012708264763575676679116096}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{10} + \frac{13986787484060769706905788692816202283437908367445258916575067350025348815784633006142725}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{9} - \frac{12717369826761489140997661021746869663863145560938413319723751493609377492614375707618360}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{8} + \frac{6579085148083514416849989437951959274745707498197881652603385281603234633400155081387027}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{7} - \frac{16328647547256607316609311226549334756690550161657286350996706897541708734521521058085927}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{6} + \frac{22209327570144471326728645743472829735447935662161735387282167678613498754312724150799264}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{5} - \frac{21721497923990959801744978702648335706285506914073534128212223898445628998013072509369086}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{4} - \frac{13259710016856193536063339014224604982965485016805053820806242480179000562869372250719075}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{3} + \frac{1120061569509873086666491948539774163299907573202182098115434715577674665014055295030546}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a^{2} - \frac{3260132370604462183835929729069927347531569338607692313255147393634655825282384650356319}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407} a - \frac{1685591928305849363534915438991263095658234039475269376324820536014601631918321164739745}{51197899833579289860167221847669336114555214005356210297146851641976303269201634663138407}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{17310766}$, which has order $17310766$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.8243805699 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-10}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $22$ R ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R $22$ $22$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$