/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^22 + 3*x^20 + 4*x^18 + 4*x^16 + 11*x^14 + 10*x^12 + 4*x^10 + 12*x^8 + 7*x^6 + 6*x^4 + 4*x^2 + 1, 22, 32, [0, 11], -70765994783241803539463274496, [2, 167], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, 1/5*a^14 - 1/5*a^12 - 1/5*a^10 - 1/5*a^8 - 2/5*a^6 - 1/5*a^4 - 2/5*a^2 - 1/5, 1/5*a^15 - 1/5*a^13 - 1/5*a^11 - 1/5*a^9 - 2/5*a^7 - 1/5*a^5 - 2/5*a^3 - 1/5*a, 1/5*a^16 - 2/5*a^12 - 2/5*a^10 + 2/5*a^8 + 2/5*a^6 + 2/5*a^4 + 2/5*a^2 - 1/5, 1/5*a^17 - 2/5*a^13 - 2/5*a^11 + 2/5*a^9 + 2/5*a^7 + 2/5*a^5 + 2/5*a^3 - 1/5*a, 1/5*a^18 + 1/5*a^12 - 2/5*a^6 - 2/5, 1/5*a^19 + 1/5*a^13 - 2/5*a^7 - 2/5*a, 1/65*a^20 - 3/65*a^18 - 4/65*a^16 + 2/65*a^14 - 1/65*a^12 - 23/65*a^10 - 1/65*a^8 + 31/65*a^6 + 16/65*a^4 - 12/65*a^2 + 24/65, 1/65*a^21 - 3/65*a^19 - 4/65*a^17 + 2/65*a^15 - 1/65*a^13 - 23/65*a^11 - 1/65*a^9 + 31/65*a^7 + 16/65*a^5 - 12/65*a^3 + 24/65*a], 0, 1, [], 1, [ a^(21) + 3*a^(19) + 4*a^(17) + 4*a^(15) + 11*a^(13) + 10*a^(11) + 4*a^(9) + 12*a^(7) + 7*a^(5) + 6*a^(3) + 4*a , (58)/(65)*a^(20) + (164)/(65)*a^(18) + (197)/(65)*a^(16) + (181)/(65)*a^(14) + (592)/(65)*a^(12) + (473)/(65)*a^(10) + (17)/(13)*a^(8) + (123)/(13)*a^(6) + (291)/(65)*a^(4) + (227)/(65)*a^(2) + (92)/(65) , (1)/(13)*a^(20) - (2)/(65)*a^(18) - (4)/(13)*a^(16) - (16)/(65)*a^(14) + (34)/(65)*a^(12) - (89)/(65)*a^(10) - (44)/(65)*a^(8) + (51)/(65)*a^(6) - (154)/(65)*a^(4) - (8)/(65)*a^(2) - (15)/(13) , (27)/(65)*a^(21) + (49)/(65)*a^(19) + (7)/(13)*a^(17) + (54)/(65)*a^(15) + (272)/(65)*a^(13) + (3)/(65)*a^(11) - (1)/(65)*a^(9) + (408)/(65)*a^(7) - (127)/(65)*a^(5) + (92)/(65)*a^(3) + (10)/(13)*a , (28)/(65)*a^(21) + (72)/(65)*a^(19) + (83)/(65)*a^(17) + (69)/(65)*a^(15) + (49)/(13)*a^(13) + (123)/(65)*a^(11) + (24)/(65)*a^(9) + (41)/(13)*a^(7) - (4)/(13)*a^(5) + (158)/(65)*a^(3) + (22)/(65)*a , (14)/(13)*a^(20) + (193)/(65)*a^(18) + (48)/(13)*a^(16) + (244)/(65)*a^(14) + (749)/(65)*a^(12) + (561)/(65)*a^(10) + (216)/(65)*a^(8) + (831)/(65)*a^(6) + (301)/(65)*a^(4) + (382)/(65)*a^(2) + a + (37)/(13) , (27)/(65)*a^(21) + (4)/(65)*a^(20) + (15)/(13)*a^(19) + (27)/(65)*a^(18) + (74)/(65)*a^(17) + (62)/(65)*a^(16) + (41)/(65)*a^(15) + (73)/(65)*a^(14) + (233)/(65)*a^(13) + (74)/(65)*a^(12) + (198)/(65)*a^(11) + (142)/(65)*a^(10) - (8)/(13)*a^(9) + (87)/(65)*a^(8) + (53)/(13)*a^(7) + (7)/(65)*a^(6) + (224)/(65)*a^(5) + (5)/(13)*a^(4) + (66)/(65)*a^(3) + (43)/(65)*a^(2) + (102)/(65)*a + (1)/(13) , (69)/(65)*a^(21) + (21)/(65)*a^(20) + (144)/(65)*a^(19) + (16)/(13)*a^(18) + (101)/(65)*a^(17) + (124)/(65)*a^(16) + (86)/(65)*a^(15) + (107)/(65)*a^(14) + (124)/(13)*a^(13) + (226)/(65)*a^(12) + (116)/(65)*a^(11) + (336)/(65)*a^(10) - (173)/(65)*a^(9) + (27)/(13)*a^(8) + (173)/(13)*a^(7) + (131)/(65)*a^(6) - (21)/(13)*a^(5) + (297)/(65)*a^(4) + (19)/(13)*a^(3) + (229)/(65)*a^(2) + (44)/(65)*a + (2)/(13) , (11)/(13)*a^(21) + (53)/(65)*a^(20) + (134)/(65)*a^(19) + (153)/(65)*a^(18) + (131)/(65)*a^(17) + (204)/(65)*a^(16) + (97)/(65)*a^(15) + (223)/(65)*a^(14) + (93)/(13)*a^(13) + (122)/(13)*a^(12) + (191)/(65)*a^(11) + (497)/(65)*a^(10) - (11)/(13)*a^(9) + (207)/(65)*a^(8) + (107)/(13)*a^(7) + (642)/(65)*a^(6) + (7)/(13)*a^(5) + (263)/(65)*a^(4) + (263)/(65)*a^(3) + (222)/(65)*a^(2) + (124)/(65)*a + (23)/(13) , (341)/(65)*a^(21) + (87)/(65)*a^(20) + (888)/(65)*a^(19) + (194)/(65)*a^(18) + (1002)/(65)*a^(17) + (37)/(13)*a^(16) + (191)/(13)*a^(15) + (174)/(65)*a^(14) + (678)/(13)*a^(13) + (797)/(65)*a^(12) + (2102)/(65)*a^(11) + (248)/(65)*a^(10) + (478)/(65)*a^(9) + (69)/(65)*a^(8) + (796)/(13)*a^(7) + (968)/(65)*a^(6) + (189)/(13)*a^(5) - (142)/(65)*a^(4) + (1589)/(65)*a^(3) + (477)/(65)*a^(2) + (813)/(65)*a - (1)/(13) ], 290901.068764, [[x^11 - x^10 + 5*x^9 - 4*x^8 + 10*x^7 - 6*x^6 + 11*x^5 - 7*x^4 + 9*x^3 - 4*x^2 + 2*x + 1, 1]]]