Normalized defining polynomial
\( x^{22} - 9 x^{21} - 3 x^{20} + 159 x^{19} + 231 x^{18} - 2061 x^{17} - 3685 x^{16} + 10860 x^{15} + 43511 x^{14} - 4617 x^{13} - 151828 x^{12} - 220921 x^{11} + 178157 x^{10} + 730124 x^{9} + 3092873 x^{8} + 8707748 x^{7} + 20867753 x^{6} + 33250364 x^{5} + 51453681 x^{4} + 60447125 x^{3} + 73795185 x^{2} + 59497518 x + 50167427 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6570138038458798225574551839115963943843569543=-\,7^{11}\cdot 67^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(469=7\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{469}(64,·)$, $\chi_{469}(1,·)$, $\chi_{469}(260,·)$, $\chi_{469}(265,·)$, $\chi_{469}(202,·)$, $\chi_{469}(76,·)$, $\chi_{469}(461,·)$, $\chi_{469}(15,·)$, $\chi_{469}(216,·)$, $\chi_{469}(148,·)$, $\chi_{469}(22,·)$, $\chi_{469}(344,·)$, $\chi_{469}(92,·)$, $\chi_{469}(349,·)$, $\chi_{469}(223,·)$, $\chi_{469}(225,·)$, $\chi_{469}(293,·)$, $\chi_{469}(426,·)$, $\chi_{469}(174,·)$, $\chi_{469}(442,·)$, $\chi_{469}(330,·)$, $\chi_{469}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1073} a^{18} - \frac{312}{1073} a^{17} + \frac{83}{1073} a^{16} + \frac{530}{1073} a^{15} + \frac{2}{37} a^{14} - \frac{221}{1073} a^{13} + \frac{23}{1073} a^{12} + \frac{4}{1073} a^{11} - \frac{6}{37} a^{10} - \frac{473}{1073} a^{9} + \frac{89}{1073} a^{8} - \frac{301}{1073} a^{7} - \frac{5}{37} a^{6} - \frac{372}{1073} a^{5} + \frac{427}{1073} a^{4} + \frac{4}{1073} a^{3} - \frac{161}{1073} a^{2} + \frac{498}{1073} a + \frac{442}{1073}$, $\frac{1}{256447} a^{19} - \frac{97}{256447} a^{18} + \frac{54252}{256447} a^{17} + \frac{37689}{256447} a^{16} - \frac{53380}{256447} a^{15} - \frac{114365}{256447} a^{14} + \frac{46932}{256447} a^{13} + \frac{117614}{256447} a^{12} - \frac{13263}{256447} a^{11} - \frac{38956}{256447} a^{10} + \frac{22862}{256447} a^{9} - \frac{128167}{256447} a^{8} + \frac{31710}{256447} a^{7} + \frac{73607}{256447} a^{6} + \frac{68521}{256447} a^{5} + \frac{38159}{256447} a^{4} - \frac{22907}{256447} a^{3} + \frac{53869}{256447} a^{2} + \frac{57081}{256447} a + \frac{31723}{256447}$, $\frac{1}{256447} a^{20} - \frac{89}{256447} a^{18} + \frac{85392}{256447} a^{17} - \frac{126903}{256447} a^{16} - \frac{127674}{256447} a^{15} - \frac{60838}{256447} a^{14} - \frac{17489}{256447} a^{13} + \frac{103979}{256447} a^{12} + \frac{33487}{256447} a^{11} - \frac{40854}{256447} a^{10} + \frac{5606}{256447} a^{9} + \frac{13171}{256447} a^{8} + \frac{4954}{256447} a^{7} - \frac{124598}{256447} a^{6} + \frac{62723}{256447} a^{5} - \frac{120628}{256447} a^{4} - \frac{39815}{256447} a^{3} - \frac{49477}{256447} a^{2} + \frac{117946}{256447} a - \frac{113758}{256447}$, $\frac{1}{58067213892884303030968469749624884899803816778787790847901151} a^{21} + \frac{98867339522426793542840003867674904402916169809589463827}{58067213892884303030968469749624884899803816778787790847901151} a^{20} + \frac{33697364823932548549219652630555441471568178295086917199}{58067213892884303030968469749624884899803816778787790847901151} a^{19} - \frac{19636104557840160927117334965577676853704074930662740638385}{58067213892884303030968469749624884899803816778787790847901151} a^{18} + \frac{22499558456465447118848265308784471631997346793497744787621685}{58067213892884303030968469749624884899803816778787790847901151} a^{17} + \frac{733999909075753463800925360534173702040999128306549853631470}{2002317720444286311412705853435340858613924716509923822341419} a^{16} + \frac{6775069682813019452075042162539117781769887954544223192168563}{58067213892884303030968469749624884899803816778787790847901151} a^{15} - \frac{28480626094940829314712597925306633891048972383407910199390688}{58067213892884303030968469749624884899803816778787790847901151} a^{14} + \frac{27602868383387396102786355417438753575908648002744993519567153}{58067213892884303030968469749624884899803816778787790847901151} a^{13} - \frac{16860692779640987852259256564849784420197580085603247870517431}{58067213892884303030968469749624884899803816778787790847901151} a^{12} + \frac{16587554791170274879375673216898685120672736096864597243317383}{58067213892884303030968469749624884899803816778787790847901151} a^{11} - \frac{552307872241016035343097749458502714048444472783589754283905}{1569384159267143325161309993233104997291995048075345698591923} a^{10} + \frac{20674211356164478090420278203670239849030221927428312668064143}{58067213892884303030968469749624884899803816778787790847901151} a^{9} - \frac{14043394091444845077180643806708901207575612630165666601887860}{58067213892884303030968469749624884899803816778787790847901151} a^{8} + \frac{814250739373575792333217105053510734528885439104506117838552}{2002317720444286311412705853435340858613924716509923822341419} a^{7} - \frac{15611717893653921697694710202508439192179278389585757227554627}{58067213892884303030968469749624884899803816778787790847901151} a^{6} - \frac{6508983927167517275558120466600026811655162404162572300721396}{58067213892884303030968469749624884899803816778787790847901151} a^{5} + \frac{28877686863204584996493077499466976169099282455705638926869972}{58067213892884303030968469749624884899803816778787790847901151} a^{4} + \frac{726393014852311430954693196293394315739970662387015153990755}{2002317720444286311412705853435340858613924716509923822341419} a^{3} - \frac{13652993040355497137062019425910207591101686933948666624356948}{58067213892884303030968469749624884899803816778787790847901151} a^{2} - \frac{13041750729315378296012539860715623210960729874759895141859519}{58067213892884303030968469749624884899803816778787790847901151} a - \frac{22369625906420479300323858147947258728480670669518947389056253}{58067213892884303030968469749624884899803816778787790847901151}$
Class group and class number
$C_{420607}$, which has order $420607$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.042557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $67$ | 67.11.10.1 | $x^{11} - 67$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 67.11.10.1 | $x^{11} - 67$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |