Normalized defining polynomial
\( x^{22} - 9 x^{21} + 56 x^{20} - 220 x^{19} + 580 x^{18} - 2264 x^{17} + 4416 x^{16} - 1384 x^{15} - 10860 x^{14} + 89440 x^{13} - 29880 x^{12} - 76000 x^{11} + 2534220 x^{10} - 7594460 x^{9} + 27154440 x^{8} - 60342304 x^{7} + 148813536 x^{6} - 272410304 x^{5} + 488764480 x^{4} - 632907520 x^{3} + 679729856 x^{2} - 426298944 x + 185673856 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-645700815000000000000000000000000000000000000=-\,2^{36}\cdot 3^{17}\cdot 5^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{15} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{17} - \frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{19} - \frac{1}{64} a^{18} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{16} a^{11} - \frac{1}{8} a^{9} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{384} a^{20} + \frac{1}{384} a^{19} - \frac{1}{96} a^{18} + \frac{1}{64} a^{17} + \frac{1}{48} a^{16} - \frac{1}{32} a^{15} - \frac{1}{48} a^{14} - \frac{1}{8} a^{13} - \frac{7}{96} a^{12} - \frac{1}{16} a^{11} - \frac{1}{12} a^{10} - \frac{1}{8} a^{9} + \frac{11}{96} a^{8} + \frac{5}{32} a^{7} - \frac{13}{48} a^{6} + \frac{7}{16} a^{5} - \frac{5}{12} a^{4} - \frac{1}{8} a^{3} + \frac{1}{12} a^{2} - \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{382130124597617681578353241544341513395342156704661924961353602289394132675400448} a^{21} + \frac{77921052380325162925715723014217793614564353849836114105844803060516804109229}{382130124597617681578353241544341513395342156704661924961353602289394132675400448} a^{20} + \frac{136111286554239880287174991416430069419890933519069197502976381905239809193087}{31844177049801473464862770128695126116278513058721827080112800190782844389616704} a^{19} - \frac{2271836657263493064549362372534815049561247955128267678135564933291153960712757}{191065062298808840789176620772170756697671078352330962480676801144697066337700224} a^{18} + \frac{31784602023427558270540521318289330048433937977995322817046992858129943372949}{2221686770916381869641588613629892519740361376189894912566009315636012399275584} a^{17} + \frac{2455786706347947106626741795751633846213413116537280356293276090436723872745243}{95532531149404420394588310386085378348835539176165481240338400572348533168850112} a^{16} - \frac{2011338584392198630912558811169694844904499649655475435207363527831213839000467}{47766265574702210197294155193042689174417769588082740620169200286174266584425056} a^{15} + \frac{422189112468731944993559671437953607330139382720226377434859029234721645336713}{23883132787351105098647077596521344587208884794041370310084600143087133292212528} a^{14} + \frac{4399715700059261445958764017368487120966836399155638258221578375006121089404069}{95532531149404420394588310386085378348835539176165481240338400572348533168850112} a^{13} - \frac{4672447166390007995107516319725911006429422407065492769718755933013484882557249}{47766265574702210197294155193042689174417769588082740620169200286174266584425056} a^{12} + \frac{1931873371957412642835133086172714185242004754234969282758681257409642552299935}{23883132787351105098647077596521344587208884794041370310084600143087133292212528} a^{11} + \frac{1286304572864411525667985694643455607178574414485728677475369294825463331882201}{11941566393675552549323538798260672293604442397020685155042300071543566646106264} a^{10} + \frac{2009199451037800177744175106050132879256616816971666844326263776388591770613003}{95532531149404420394588310386085378348835539176165481240338400572348533168850112} a^{9} + \frac{16432043354063390552230875480927348267044771386775361713976868067153126368697771}{95532531149404420394588310386085378348835539176165481240338400572348533168850112} a^{8} - \frac{1975645540397134899652875746418133463065293889395225585501821275919647075927537}{47766265574702210197294155193042689174417769588082740620169200286174266584425056} a^{7} - \frac{479862365562863416679017198476051690957681081178553687122821609324422114184151}{47766265574702210197294155193042689174417769588082740620169200286174266584425056} a^{6} - \frac{4450036519890946793946876714687634533828815282062652947819535939156887521334453}{23883132787351105098647077596521344587208884794041370310084600143087133292212528} a^{5} + \frac{6039174424623547338736931882414424386712568095737822370768080292849750278350061}{23883132787351105098647077596521344587208884794041370310084600143087133292212528} a^{4} - \frac{489816103494036644750449284414911672864773147245555719463920789954499065371391}{11941566393675552549323538798260672293604442397020685155042300071543566646106264} a^{3} + \frac{1777145900893458483319102596352714199120470707343514260931213395783297992747203}{3980522131225184183107846266086890764534814132340228385014100023847855548702088} a^{2} - \frac{1341934782505523640278946118734833344168686064491776735059657520260383778980989}{2985391598418888137330884699565168073401110599255171288760575017885891661526566} a - \frac{808643388519604720370786404095978340415290965191887101007369687015033439103577}{2985391598418888137330884699565168073401110599255171288760575017885891661526566}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 685314816230000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15840 |
| The 20 conjugacy class representatives for t22n26 |
| Character table for t22n26 |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.20.34 | $x^{12} + 14 x^{10} + 16 x^{8} - 8 x^{6} - 8 x^{4} + 16 x^{2} + 16$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.10.18.2 | $x^{10} + 10 x^{8} + 40 x^{6} + 60 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |
| 5.10.19.16 | $x^{10} + 85$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |