Normalized defining polynomial
\( x^{22} - 11 x^{20} + 33 x^{18} - 66 x^{17} - 44 x^{16} + 308 x^{15} + 253 x^{14} - 44 x^{13} + 913 x^{12} + 1840 x^{11} + 1309 x^{10} - 814 x^{9} + 2904 x^{8} + 4752 x^{7} + 7117 x^{6} - 4004 x^{5} + 825 x^{4} - 44 x^{3} + 6721 x^{2} - 5434 x + 1644 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-61533497770089105512253259111202816=-\,2^{36}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{19} + \frac{1}{8} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{3}{8} a^{3}$, $\frac{1}{16} a^{20} - \frac{1}{16} a^{19} - \frac{1}{16} a^{18} - \frac{1}{8} a^{17} - \frac{3}{16} a^{12} + \frac{3}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{16} a^{4} - \frac{1}{16} a^{3} - \frac{5}{16} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{15666260320563965640003586638044528411984} a^{21} + \frac{356009219950138504864451829424145372821}{15666260320563965640003586638044528411984} a^{20} + \frac{13393055095823106651011312254626131083}{423412441096323395675772611839041308432} a^{19} + \frac{1277984110045833743164689303495169139}{26463277568520212229735788239940081777} a^{18} + \frac{60707043882536458053849144296995153124}{979141270035247852500224164877783025749} a^{17} - \frac{314874386932842288202790858285292153197}{3916565080140991410000896659511132102996} a^{16} - \frac{92667559491178089712358583546941274387}{3916565080140991410000896659511132102996} a^{15} + \frac{205340456772232546046865095184271333157}{1958282540070495705000448329755566051498} a^{14} - \frac{3669580245242028927987965184199660705691}{15666260320563965640003586638044528411984} a^{13} + \frac{16843650063496484209657045853485571457}{423412441096323395675772611839041308432} a^{12} - \frac{3846930805386272048704793680547449506221}{15666260320563965640003586638044528411984} a^{11} + \frac{403768037741106358204097304800092983829}{1958282540070495705000448329755566051498} a^{10} - \frac{483319081170787095720004205548346070043}{1958282540070495705000448329755566051498} a^{9} + \frac{210355490756620402153341151347971191511}{3916565080140991410000896659511132102996} a^{8} + \frac{277377160722565764118201996704270221543}{3916565080140991410000896659511132102996} a^{7} + \frac{1902181082965691735401071885382722688485}{3916565080140991410000896659511132102996} a^{6} - \frac{1594175347584752127119912533123506032411}{15666260320563965640003586638044528411984} a^{5} + \frac{669537852676628075667377927096838486245}{15666260320563965640003586638044528411984} a^{4} + \frac{1253727814837707580432686623005149396915}{15666260320563965640003586638044528411984} a^{3} + \frac{273270428081338551940812614603454676298}{979141270035247852500224164877783025749} a^{2} + \frac{484307073017912886557779586452641287076}{979141270035247852500224164877783025749} a + \frac{789657883572250429521396116891994416655}{1958282540070495705000448329755566051498}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 984813482.893 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 13 conjugacy class representatives for t22n14 |
| Character table for t22n14 |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.20.37 | $x^{12} - 6 x^{10} - x^{8} + 4 x^{6} + 3 x^{4} + 2 x^{2} - 7$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 11 | Data not computed | ||||||