Normalized defining polynomial
\( x^{22} + 656 x^{20} + 190059 x^{18} + 31982160 x^{16} + 3455500056 x^{14} + 249908957112 x^{12} + 12216440211264 x^{10} + 397142176666080 x^{8} + 8187635841570693 x^{6} + 96794448620299288 x^{4} + 522455049623219279 x^{2} + 597908782748023056 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-61415850852267200397515695951218522185201753278017240901376750286638166845798793940070572804439992043594317824=-\,2^{68}\cdot 3^{20}\cdot 17\cdot 97\cdot 337^{8}\cdot 8297\cdot 11273\cdot 26921\cdot 310501^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97{,}808.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97, 337, 8297, 11273, 26921, 310501$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718490685}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{285314373863498156819074950717143524387487689154714929482}{1315620922890192728084676057556238674784696872714445759239} a^{16} + \frac{5944282035118542332199914159684414566100617890003123549920}{14471830151792120008931436633118625422631665599858903351629} a^{14} + \frac{5079880002412714118012206989965807874620296635018234819967}{14471830151792120008931436633118625422631665599858903351629} a^{12} - \frac{5736856693441053286414799276111616633163315487318148987591}{14471830151792120008931436633118625422631665599858903351629} a^{10} - \frac{2238730398598376248383505132029243922465089711141898142967}{14471830151792120008931436633118625422631665599858903351629} a^{8} - \frac{4752503954843329533704203467523599594219342664324526636535}{14471830151792120008931436633118625422631665599858903351629} a^{6} + \frac{25924383890974682371741859663195175816388224369793171662225}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{3883945488032126807101248456736692867503436736718451565533}{57887320607168480035725746532474501690526662399435613406516} a^{2} + \frac{6596098091164470811536283423510131792881603828929434631956}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{347323923643010880214354479194847010143159974396613680439096} a^{21} + \frac{20232524059240298510684950852616176915805712411409995782101}{173661961821505440107177239597423505071579987198306840219548} a^{19} - \frac{1696040088041523603843442658512430040634680458254065665215}{10524967383121541824677408460449909398277574981715566073912} a^{17} - \frac{1}{2} a^{16} + \frac{5814657056450463725010464570986944235227324848286821708863}{14471830151792120008931436633118625422631665599858903351629} a^{15} + \frac{3258618359034139021157273937180738882875327039146189695266}{14471830151792120008931436633118625422631665599858903351629} a^{13} + \frac{6279772293655884456729918437207376605788613552043093511216}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{6862793342796330629735134127887772057571651181405801985320}{14471830151792120008931436633118625422631665599858903351629} a^{9} + \frac{6443831083422171748848351071972046112279275689208697236392}{14471830151792120008931436633118625422631665599858903351629} a^{7} - \frac{49245859310176919245145126644742776418397254276171222852441}{115774641214336960071451493064949003381053324798871226813032} a^{5} + \frac{77653093090840596645572277253784093390722442430864742651193}{173661961821505440107177239597423505071579987198306840219548} a^{3} + \frac{40856222516450003255076570327159152594158080915576641879453}{347323923643010880214354479194847010143159974396613680439096} a - \frac{1}{2}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 97.10.0.1 | $x^{10} - 2 x + 57$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 337 | Data not computed | ||||||
| 8297 | Data not computed | ||||||
| 11273 | Data not computed | ||||||
| 26921 | Data not computed | ||||||
| 310501 | Data not computed | ||||||