Properties

Label 22.0.58861300855...8347.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 67^{20}$
Root discriminant $79.18$
Ramified primes $3, 67$
Class number $5819$ (GRH)
Class group $[23, 253]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![841, 7047, 58034, 110469, 371579, -1017019, 3006023, -3601844, 3793565, -2627379, 1776770, -903191, 491216, -197946, 87182, -25959, 9669, -2148, 743, -96, 31, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 31*x^20 - 96*x^19 + 743*x^18 - 2148*x^17 + 9669*x^16 - 25959*x^15 + 87182*x^14 - 197946*x^13 + 491216*x^12 - 903191*x^11 + 1776770*x^10 - 2627379*x^9 + 3793565*x^8 - 3601844*x^7 + 3006023*x^6 - 1017019*x^5 + 371579*x^4 + 110469*x^3 + 58034*x^2 + 7047*x + 841)
 
gp: K = bnfinit(x^22 - x^21 + 31*x^20 - 96*x^19 + 743*x^18 - 2148*x^17 + 9669*x^16 - 25959*x^15 + 87182*x^14 - 197946*x^13 + 491216*x^12 - 903191*x^11 + 1776770*x^10 - 2627379*x^9 + 3793565*x^8 - 3601844*x^7 + 3006023*x^6 - 1017019*x^5 + 371579*x^4 + 110469*x^3 + 58034*x^2 + 7047*x + 841, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 31 x^{20} - 96 x^{19} + 743 x^{18} - 2148 x^{17} + 9669 x^{16} - 25959 x^{15} + 87182 x^{14} - 197946 x^{13} + 491216 x^{12} - 903191 x^{11} + 1776770 x^{10} - 2627379 x^{9} + 3793565 x^{8} - 3601844 x^{7} + 3006023 x^{6} - 1017019 x^{5} + 371579 x^{4} + 110469 x^{3} + 58034 x^{2} + 7047 x + 841 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-588613008557716517601287069955881168578347=-\,3^{11}\cdot 67^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $79.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(201=3\cdot 67\)
Dirichlet character group:    $\lbrace$$\chi_{201}(64,·)$, $\chi_{201}(1,·)$, $\chi_{201}(131,·)$, $\chi_{201}(68,·)$, $\chi_{201}(193,·)$, $\chi_{201}(76,·)$, $\chi_{201}(14,·)$, $\chi_{201}(143,·)$, $\chi_{201}(82,·)$, $\chi_{201}(148,·)$, $\chi_{201}(149,·)$, $\chi_{201}(22,·)$, $\chi_{201}(89,·)$, $\chi_{201}(25,·)$, $\chi_{201}(91,·)$, $\chi_{201}(92,·)$, $\chi_{201}(158,·)$, $\chi_{201}(40,·)$, $\chi_{201}(196,·)$, $\chi_{201}(107,·)$, $\chi_{201}(59,·)$, $\chi_{201}(62,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{37} a^{17} - \frac{16}{37} a^{16} - \frac{16}{37} a^{15} + \frac{2}{37} a^{14} - \frac{18}{37} a^{13} + \frac{2}{37} a^{12} + \frac{8}{37} a^{11} - \frac{13}{37} a^{10} - \frac{1}{37} a^{9} + \frac{14}{37} a^{8} - \frac{5}{37} a^{7} + \frac{12}{37} a^{6} + \frac{1}{37} a^{5} - \frac{7}{37} a^{4} + \frac{6}{37} a^{3} - \frac{6}{37} a^{2} - \frac{13}{37} a + \frac{12}{37}$, $\frac{1}{37} a^{18} - \frac{13}{37} a^{16} + \frac{5}{37} a^{15} + \frac{14}{37} a^{14} + \frac{10}{37} a^{13} + \frac{3}{37} a^{12} + \frac{4}{37} a^{11} + \frac{13}{37} a^{10} - \frac{2}{37} a^{9} - \frac{3}{37} a^{8} + \frac{6}{37} a^{7} + \frac{8}{37} a^{6} + \frac{9}{37} a^{5} + \frac{5}{37} a^{4} + \frac{16}{37} a^{3} + \frac{2}{37} a^{2} - \frac{11}{37} a + \frac{7}{37}$, $\frac{1}{1073} a^{19} - \frac{9}{1073} a^{18} + \frac{10}{1073} a^{17} - \frac{209}{1073} a^{16} + \frac{267}{1073} a^{15} + \frac{189}{1073} a^{14} - \frac{57}{1073} a^{13} - \frac{421}{1073} a^{12} + \frac{383}{1073} a^{11} + \frac{137}{1073} a^{10} - \frac{45}{1073} a^{9} - \frac{274}{1073} a^{8} + \frac{24}{1073} a^{7} + \frac{139}{1073} a^{6} + \frac{95}{1073} a^{5} - \frac{449}{1073} a^{4} + \frac{440}{1073} a^{3} + \frac{55}{1073} a^{2} - \frac{526}{1073} a + \frac{15}{37}$, $\frac{1}{256447} a^{20} - \frac{48}{256447} a^{19} - \frac{161}{256447} a^{18} - \frac{2890}{256447} a^{17} + \frac{101218}{256447} a^{16} + \frac{87129}{256447} a^{15} + \frac{107296}{256447} a^{14} - \frac{45874}{256447} a^{13} - \frac{100938}{256447} a^{12} + \frac{20580}{256447} a^{11} - \frac{76815}{256447} a^{10} - \frac{33812}{256447} a^{9} + \frac{27414}{256447} a^{8} - \frac{10715}{256447} a^{7} + \frac{85328}{256447} a^{6} + \frac{44653}{256447} a^{5} - \frac{213}{8843} a^{4} + \frac{99214}{256447} a^{3} + \frac{54024}{256447} a^{2} + \frac{65058}{256447} a + \frac{598}{8843}$, $\frac{1}{363792406196870434044052044865158080654898895057} a^{21} + \frac{134061252255875920885634782192791050877138}{363792406196870434044052044865158080654898895057} a^{20} + \frac{21785071667451461986331537619890701651822143}{363792406196870434044052044865158080654898895057} a^{19} + \frac{3159980038539151862407229395586978195676763113}{363792406196870434044052044865158080654898895057} a^{18} - \frac{4395792072926501584288205228669343204787161817}{363792406196870434044052044865158080654898895057} a^{17} - \frac{41512880152371300308436009330954931120288229915}{363792406196870434044052044865158080654898895057} a^{16} - \frac{119214428507423729702000770867744722383167617228}{363792406196870434044052044865158080654898895057} a^{15} + \frac{112265822864258099607205632631456328023645196351}{363792406196870434044052044865158080654898895057} a^{14} + \frac{12956976985842996660684590137137928541276599238}{363792406196870434044052044865158080654898895057} a^{13} + \frac{107211772771037775663479035498529742650867567722}{363792406196870434044052044865158080654898895057} a^{12} + \frac{88144571670214693651417636439914781224894371600}{363792406196870434044052044865158080654898895057} a^{11} - \frac{142471254313888483665640725737244698378781196508}{363792406196870434044052044865158080654898895057} a^{10} - \frac{118606216891000930266177471968854092457921939503}{363792406196870434044052044865158080654898895057} a^{9} + \frac{39727990696448031484281925403360647965659075233}{363792406196870434044052044865158080654898895057} a^{8} - \frac{116748566213724200517485618146205276818219484317}{363792406196870434044052044865158080654898895057} a^{7} - \frac{130611312869622848878471695101571054277167315542}{363792406196870434044052044865158080654898895057} a^{6} - \frac{29811241497550517175565617423173726996814188209}{363792406196870434044052044865158080654898895057} a^{5} + \frac{67945975438484460055561267139630812523725371315}{363792406196870434044052044865158080654898895057} a^{4} - \frac{180535609569440502092563416020754253926563221849}{363792406196870434044052044865158080654898895057} a^{3} - \frac{115967448446663892613668166178937840723137075876}{363792406196870434044052044865158080654898895057} a^{2} + \frac{127312365898362793425393607794965841248700972553}{363792406196870434044052044865158080654898895057} a - \frac{6060152356385674477946480778757246534141697522}{12544565730926566691174208443626140712237892933}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{23}\times C_{253}$, which has order $5819$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{189562659348677593313094899504554636424432}{1522143958982721481355866296506937575961920063} a^{21} - \frac{190298252352550244935323093566692439557982}{1522143958982721481355866296506937575961920063} a^{20} + \frac{5877475457995903306552345827281942102085092}{1522143958982721481355866296506937575961920063} a^{19} - \frac{18224463567626360078910365224878059642772460}{1522143958982721481355866296506937575961920063} a^{18} + \frac{140928151887084131998420888115071548213999121}{1522143958982721481355866296506937575961920063} a^{17} - \frac{407859612601517245750452833004569644103041810}{1522143958982721481355866296506937575961920063} a^{16} + \frac{1835000703828235306102410701122902140297387584}{1522143958982721481355866296506937575961920063} a^{15} - \frac{4931093548469852764491129273437932007531379707}{1522143958982721481355866296506937575961920063} a^{14} + \frac{16555552082333303784452984237276503097097944282}{1522143958982721481355866296506937575961920063} a^{13} - \frac{37627313273329278013657610709713049263100105644}{1522143958982721481355866296506937575961920063} a^{12} + \frac{93373838131794482109836400461043391319332408392}{1522143958982721481355866296506937575961920063} a^{11} - \frac{171921881044738922350922673005605013723738565686}{1522143958982721481355866296506937575961920063} a^{10} + \frac{338274312774060386582181185955116452257710506330}{1522143958982721481355866296506937575961920063} a^{9} - \frac{501258372292487864922888761778215105488904100115}{1522143958982721481355866296506937575961920063} a^{8} + \frac{724546972558380209123132748447249357741306976244}{1522143958982721481355866296506937575961920063} a^{7} - \frac{692195010731279944480633608169850489141697101396}{1522143958982721481355866296506937575961920063} a^{6} + \frac{582113517945816890899598565959449517511378178626}{1522143958982721481355866296506937575961920063} a^{5} - \frac{208351225414817690375148872175006431794387046394}{1522143958982721481355866296506937575961920063} a^{4} + \frac{83263501286189775559602364978163150665518364756}{1522143958982721481355866296506937575961920063} a^{3} + \frac{11117000723249250924969035390453585019704686040}{1522143958982721481355866296506937575961920063} a^{2} + \frac{12700672592593462857816922694417042225097219142}{1522143958982721481355866296506937575961920063} a + \frac{53159414187634214444563715304032454967089810}{52487722723542120046754010224377157791790347} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 338444542.043 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 11.11.1822837804551761449.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R $22$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ $22$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$67$67.11.10.1$x^{11} - 67$$11$$1$$10$$C_{11}$$[\ ]_{11}$
67.11.10.1$x^{11} - 67$$11$$1$$10$$C_{11}$$[\ ]_{11}$