Normalized defining polynomial
\( x^{22} - 11 x^{21} + 67 x^{20} - 285 x^{19} + 929 x^{18} - 2433 x^{17} + 5271 x^{16} - 9630 x^{15} + 15091 x^{14} - 20633 x^{13} + 25057 x^{12} - 27453 x^{11} + 27302 x^{10} - 24426 x^{9} + 19254 x^{8} - 13050 x^{7} + 7570 x^{6} - 3890 x^{5} + 1921 x^{4} - 927 x^{3} + 362 x^{2} - 87 x + 9 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-578978183833808423828407471\)\(\medspace = -\,271^{11}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $16.46$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $271$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $22$ | ||
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{17} - \frac{1}{3} a$, $\frac{1}{27} a^{18} - \frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{2}{27} a^{10} + \frac{1}{9} a^{9} - \frac{2}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{10}{27} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{81} a^{19} + \frac{1}{81} a^{18} + \frac{2}{27} a^{17} - \frac{1}{9} a^{16} - \frac{2}{27} a^{15} + \frac{1}{27} a^{14} + \frac{4}{27} a^{13} + \frac{7}{81} a^{11} + \frac{1}{81} a^{10} - \frac{4}{27} a^{9} - \frac{7}{27} a^{7} + \frac{8}{27} a^{6} + \frac{5}{27} a^{5} + \frac{1}{3} a^{4} - \frac{26}{81} a^{3} + \frac{34}{81} a^{2} - \frac{4}{27} a - \frac{4}{9}$, $\frac{1}{148473} a^{20} - \frac{10}{148473} a^{19} + \frac{2560}{148473} a^{18} - \frac{7585}{49491} a^{17} + \frac{4171}{49491} a^{16} + \frac{6152}{49491} a^{15} - \frac{5677}{49491} a^{14} - \frac{587}{3807} a^{13} - \frac{24644}{148473} a^{12} - \frac{2884}{148473} a^{11} + \frac{4027}{148473} a^{10} - \frac{5464}{49491} a^{9} - \frac{9223}{49491} a^{8} + \frac{9751}{49491} a^{7} + \frac{21301}{49491} a^{6} - \frac{19351}{49491} a^{5} - \frac{515}{11421} a^{4} + \frac{4829}{148473} a^{3} - \frac{22877}{148473} a^{2} - \frac{20704}{49491} a - \frac{5644}{16497}$, $\frac{1}{148473} a^{21} + \frac{209}{49491} a^{19} + \frac{1012}{148473} a^{18} + \frac{2380}{16497} a^{17} + \frac{430}{5499} a^{16} - \frac{6479}{49491} a^{15} - \frac{82}{16497} a^{14} + \frac{21376}{148473} a^{13} - \frac{623}{49491} a^{12} + \frac{3949}{49491} a^{11} + \frac{22045}{148473} a^{10} - \frac{7040}{49491} a^{9} + \frac{5501}{16497} a^{8} - \frac{334}{49491} a^{7} + \frac{4675}{16497} a^{6} - \frac{20828}{148473} a^{5} - \frac{20707}{49491} a^{4} + \frac{2620}{16497} a^{3} - \frac{56258}{148473} a^{2} - \frac{2179}{49491} a + \frac{383}{16497}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 33482.7947011 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 22 |
The 7 conjugacy class representatives for $D_{11}$ |
Character table for $D_{11}$ |
Intermediate fields
\(\Q(\sqrt{-271}) \), 11.1.1461660310351.1 x11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 11 sibling: | 11.1.1461660310351.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
271 | Data not computed |