Properties

Label 22.0.54483800952...5239.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 13^{11}\cdot 23^{20}$
Root discriminant $108.01$
Ramified primes $3, 13, 23$
Class number Not computed
Class group Not computed
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![553445530681, -301326000030, 461997703697, -216014851131, 180412985566, -73186706990, 43486274233, -15398214635, 7186857343, -2225080031, 854744494, -230625416, 74585461, -17367998, 4767272, -939340, 218003, -34987, 6745, -813, 125, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 + 125*x^20 - 813*x^19 + 6745*x^18 - 34987*x^17 + 218003*x^16 - 939340*x^15 + 4767272*x^14 - 17367998*x^13 + 74585461*x^12 - 230625416*x^11 + 854744494*x^10 - 2225080031*x^9 + 7186857343*x^8 - 15398214635*x^7 + 43486274233*x^6 - 73186706990*x^5 + 180412985566*x^4 - 216014851131*x^3 + 461997703697*x^2 - 301326000030*x + 553445530681)
 
gp: K = bnfinit(x^22 - 9*x^21 + 125*x^20 - 813*x^19 + 6745*x^18 - 34987*x^17 + 218003*x^16 - 939340*x^15 + 4767272*x^14 - 17367998*x^13 + 74585461*x^12 - 230625416*x^11 + 854744494*x^10 - 2225080031*x^9 + 7186857343*x^8 - 15398214635*x^7 + 43486274233*x^6 - 73186706990*x^5 + 180412985566*x^4 - 216014851131*x^3 + 461997703697*x^2 - 301326000030*x + 553445530681, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} + 125 x^{20} - 813 x^{19} + 6745 x^{18} - 34987 x^{17} + 218003 x^{16} - 939340 x^{15} + 4767272 x^{14} - 17367998 x^{13} + 74585461 x^{12} - 230625416 x^{11} + 854744494 x^{10} - 2225080031 x^{9} + 7186857343 x^{8} - 15398214635 x^{7} + 43486274233 x^{6} - 73186706990 x^{5} + 180412985566 x^{4} - 216014851131 x^{3} + 461997703697 x^{2} - 301326000030 x + 553445530681 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-544838009528791582903069339296517113846865239=-\,3^{11}\cdot 13^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $108.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 13, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(897=3\cdot 13\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{897}(1,·)$, $\chi_{897}(196,·)$, $\chi_{897}(584,·)$, $\chi_{897}(77,·)$, $\chi_{897}(469,·)$, $\chi_{897}(662,·)$, $\chi_{897}(857,·)$, $\chi_{897}(859,·)$, $\chi_{897}(545,·)$, $\chi_{897}(547,·)$, $\chi_{897}(740,·)$, $\chi_{897}(742,·)$, $\chi_{897}(233,·)$, $\chi_{897}(430,·)$, $\chi_{897}(623,·)$, $\chi_{897}(625,·)$, $\chi_{897}(818,·)$, $\chi_{897}(116,·)$, $\chi_{897}(118,·)$, $\chi_{897}(311,·)$, $\chi_{897}(508,·)$, $\chi_{897}(703,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{21667} a^{20} - \frac{10125}{21667} a^{19} - \frac{1770}{21667} a^{18} + \frac{5638}{21667} a^{17} - \frac{3009}{21667} a^{16} - \frac{10583}{21667} a^{15} - \frac{3279}{21667} a^{14} - \frac{9190}{21667} a^{13} + \frac{5742}{21667} a^{12} - \frac{9153}{21667} a^{11} - \frac{2402}{21667} a^{10} + \frac{6835}{21667} a^{9} + \frac{347}{21667} a^{8} - \frac{10459}{21667} a^{7} + \frac{6120}{21667} a^{6} - \frac{7347}{21667} a^{5} + \frac{2623}{21667} a^{4} - \frac{8009}{21667} a^{3} + \frac{3639}{21667} a^{2} - \frac{7193}{21667} a - \frac{59}{461}$, $\frac{1}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{21} - \frac{706348140538723528892763509980930761053467237223945488630215203769108359318904351}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{20} + \frac{11106405825122703977914293926518361461756293517503448541325411955918136257817440005556}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{19} - \frac{15053245083545142614912280686788367626270002968604315876188477890744844228766774283204}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{18} - \frac{5545146616098815034438862251287890227524355320773815741843006576347472568424173362553}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{17} - \frac{14665652700066501460797064089916113775472906671044717981075076019452111398442710435687}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{16} + \frac{3845223012348592835748340119158745026119483082446902844544359227199400275177257834943}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{15} - \frac{4369080438577548486650687787553019877984344583389723096196179534854939449203069312109}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{14} - \frac{9612402792618016404951353053214920141717004181885977218058298790457100041406152080230}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{13} - \frac{6345342155995240958940734040634534609914733402071647238728909634194349304208264311576}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{12} - \frac{5802888773290536226436975862763884730872670007166239676807630344023808220685074779547}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{11} + \frac{542005852585167315938321433313405714399153467655001498647458139400329983408305467212}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{10} - \frac{13118683567146685886956798060415525892643229273745103327918430037939647287650384474853}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{9} - \frac{8524136841883804494742380133091051827372570143777783810463754417878129292489041143575}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{8} - \frac{406052102882895663467658393992682683706885605078453454507058303229738047564644231839}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{7} + \frac{328719204614337295664393626742736415490760563958350733772449860183895663466895355219}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{6} + \frac{14540672099402997495682493497522999575396486090757253234087374335631485564654719933428}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{5} + \frac{15333002686236959630546881283582917021359533586262547464801868619012354138911888543526}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{4} + \frac{1103176402956591724800009611998770239847072043625954743093726133687687136123620707796}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{3} + \frac{5880200463654986250715967928102801876123510692846731825589052433191170031067746141314}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a^{2} - \frac{7724896300398493707274056827800168968826594293259126778487163569807275984468334388646}{31174953691808677408476279205170597050875468724194942811656041895458337528876838740081} a + \frac{250834474647489702653523997661782042208173616714176170128761762115984586391930784540}{663296887059759093797367642663204192571818483493509421524596636073581649550571037023}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-39}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ R $22$ $22$ R $22$ $22$ $22$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
13Data not computed
23Data not computed