Normalized defining polynomial
\( x^{22} + 102 x^{20} + 4485 x^{18} + 111390 x^{16} + 1718400 x^{14} + 17034174 x^{12} + 108257478 x^{10} + 425426925 x^{8} + 949776795 x^{6} + 1000048665 x^{4} + 295274364 x^{2} + 24920313 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-528715444350941988071779851300000000000000000000=-\,2^{20}\cdot 3^{21}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} + \frac{3}{11} a^{14} - \frac{3}{11} a^{12} + \frac{4}{11} a^{10} + \frac{2}{11} a^{8} + \frac{3}{11} a^{6} - \frac{1}{11} a^{4}$, $\frac{1}{11} a^{17} + \frac{3}{11} a^{15} - \frac{3}{11} a^{13} + \frac{4}{11} a^{11} + \frac{2}{11} a^{9} + \frac{3}{11} a^{7} - \frac{1}{11} a^{5}$, $\frac{1}{11} a^{18} - \frac{1}{11} a^{14} + \frac{2}{11} a^{12} + \frac{1}{11} a^{10} - \frac{3}{11} a^{8} + \frac{1}{11} a^{6} + \frac{3}{11} a^{4}$, $\frac{1}{121} a^{19} + \frac{3}{121} a^{17} - \frac{47}{121} a^{15} + \frac{4}{121} a^{13} + \frac{46}{121} a^{11} - \frac{41}{121} a^{9} + \frac{54}{121} a^{7} - \frac{2}{11} a^{5}$, $\frac{1}{3970924719555003395269324565831} a^{20} - \frac{15410969027032158591492889768}{3970924719555003395269324565831} a^{18} + \frac{37011287509622991953345167680}{3970924719555003395269324565831} a^{16} + \frac{1026818705125688333716343397652}{3970924719555003395269324565831} a^{14} + \frac{214535687094167338238544840208}{3970924719555003395269324565831} a^{12} - \frac{1556189364854513704052204290656}{3970924719555003395269324565831} a^{10} - \frac{938008364368042786035518626909}{3970924719555003395269324565831} a^{8} + \frac{2784714027559190021537891337}{32817559665743829712969624511} a^{6} + \frac{58711351137837653323433254910}{360993156323182126842665869621} a^{4} - \frac{3406702182022912424285032345}{32817559665743829712969624511} a^{2} + \frac{11379749498689247017787896388}{32817559665743829712969624511}$, $\frac{1}{627406105689690536452553281401298} a^{21} - \frac{1}{7941849439110006790538649131662} a^{20} - \frac{2279822585963356408786396981027}{627406105689690536452553281401298} a^{19} - \frac{345582187296149968251172979853}{7941849439110006790538649131662} a^{18} - \frac{7529533079366269338006341053690}{313703052844845268226276640700649} a^{17} - \frac{18505643754811495976672583840}{3970924719555003395269324565831} a^{16} + \frac{1326678657851857404995894156896}{3970924719555003395269324565831} a^{15} + \frac{1652549585376248594197823518900}{3970924719555003395269324565831} a^{14} - \frac{156760667358708422358875532742476}{313703052844845268226276640700649} a^{13} - \frac{468260999870265795961938289725}{3970924719555003395269324565831} a^{12} + \frac{5982322608715972068845640503938}{313703052844845268226276640700649} a^{11} - \frac{1387864255511835909029893072398}{3970924719555003395269324565831} a^{10} - \frac{97362849095292678620560575682182}{313703052844845268226276640700649} a^{9} + \frac{1010493916668794583281758117886}{3970924719555003395269324565831} a^{8} - \frac{150820729423081417665332005645889}{627406105689690536452553281401298} a^{7} + \frac{297543742354287206892779440403}{721986312646364253685331739242} a^{6} - \frac{7256142570226211369617540013987}{28518459349531388020570603700059} a^{5} + \frac{101914563094056492190161870589}{360993156323182126842665869621} a^{4} - \frac{2300635878784090992332158748115}{5185174427187525094649200672738} a^{3} + \frac{3406702182022912424285032345}{65635119331487659425939249022} a^{2} + \frac{2210156247103525837786752738625}{5185174427187525094649200672738} a + \frac{21437810167054582695181728123}{65635119331487659425939249022}$
Class group and class number
$C_{2}\times C_{2}\times C_{27662}$, which has order $110648$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12475736338.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |