Normalized defining polynomial
\( x^{22} - 44 x^{19} - 66 x^{18} + 220 x^{17} + 2673 x^{16} - 7216 x^{15} + 18073 x^{14} - 24948 x^{13} - 71324 x^{12} + 287634 x^{11} + 372922 x^{10} - 259182 x^{9} + 1065273 x^{8} + 873180 x^{7} + 548185 x^{6} + 2092728 x^{5} + 2668061 x^{4} + 545116 x^{3} + 4041697 x^{2} + 459635 x + 2001481 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4978518112499354698647829163838661251242411=-\,11^{41}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{21} - \frac{170683639013744981986790160375544641291178843203496973846005784676323607485067948914}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{20} + \frac{520039526782545479071745061433929053006247301445571303837563242709299800951930700900}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{19} + \frac{618324097275195883749287061560914084569159828087316574907462989607304748658628631413}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{18} + \frac{276961749075946533472095556185700307970969109290313245432653627764203376583323533138}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{17} + \frac{482135472414668305508044589667966895605010197225416506915742876979732809865332650954}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{16} - \frac{2071845882318143924495583838836220998394302132610965341123217060142600785989611248}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{15} + \frac{844745432783037036751654622501651179983936823829516284731653194708548127386971212278}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{14} + \frac{550638583957512060440448940517536467407081116867590356075692477476530717833477957602}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{13} - \frac{852525565374643932736926095995395577970436192966773148658823764170778532265219966753}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{12} - \frac{801184453704967951694758348056993825512124494718861233061051502626499381597664226542}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{11} - \frac{242348814681167336380933045573640599814128376214839707259579081237988672567911417343}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{10} - \frac{158612273371037871327031345227005168680426275451796372282084957842705281649038021092}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{9} - \frac{150718854548405721556321328258423616169552601424538488581103677635320534796712817673}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{8} - \frac{175255246093797769593614159442509926581109665098977787481476248253738009026167930083}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{7} + \frac{53560795191141275084243893008284845781396775628999156591146383789335194269582588096}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{6} - \frac{477135652387315488803567467702322358955668364105992109796718822255538697357022936142}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{5} - \frac{836361333699466051211711116618483759789573285272418027795165164069863195301512913806}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{4} - \frac{68787074692825940386089237137397437565809803878750637077096412571234081943050309901}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{3} - \frac{37441670885217480354682158123266623316076503623778675684701941866142689628008968914}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a^{2} + \frac{66640909635399720347350419718852899731478400507329160709366767041271946124557871264}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767} a - \frac{644573752478133155335121823606868066240801528581014748829512202627005912424751430631}{1727272103458797706759726583775285427791324092182186772067668938400582017899136971767}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1205305578130 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{11}\times D_{11}$ (as 22T7):
| A solvable group of order 242 |
| The 77 conjugacy class representatives for $C_{11}\times D_{11}$ are not computed |
| Character table for $C_{11}\times D_{11}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{11}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||