Normalized defining polynomial
\( x^{22} - 44 x^{19} - 66 x^{18} + 704 x^{17} + 2673 x^{16} + 2706 x^{15} - 15686 x^{14} - 58828 x^{13} - 64306 x^{12} + 193023 x^{11} + 804166 x^{10} + 1061170 x^{9} - 198088 x^{8} - 4704557 x^{7} - 9674137 x^{6} - 8569429 x^{5} + 12214961 x^{4} + 48915955 x^{3} + 96352960 x^{2} + 90503600 x + 76515613 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4978518112499354698647829163838661251242411=-\,11^{41}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{31} a^{20} - \frac{10}{31} a^{19} + \frac{15}{31} a^{18} + \frac{5}{31} a^{17} + \frac{4}{31} a^{16} - \frac{9}{31} a^{15} + \frac{5}{31} a^{14} + \frac{11}{31} a^{13} - \frac{8}{31} a^{12} - \frac{8}{31} a^{11} + \frac{4}{31} a^{10} + \frac{6}{31} a^{9} - \frac{2}{31} a^{8} + \frac{15}{31} a^{7} - \frac{9}{31} a^{6} - \frac{4}{31} a^{5} + \frac{1}{31} a^{4} + \frac{14}{31} a^{3} - \frac{8}{31} a^{2} + \frac{7}{31} a - \frac{10}{31}$, $\frac{1}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{21} - \frac{1040801415759676244192128485304305636475675462930127744997765004721607753809779548}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{20} - \frac{24476087781098970953657452083277732474343574523187212126620944644021298492047546406}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{19} + \frac{41114229145470672529206587045389364162716608196432097652742109083514394025420511637}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{18} - \frac{252728204245944529476942352548997162913900309863614785578077271405330700829997145}{1656078689849648892729319421389735956921921487285528544789406427751831597988294349} a^{17} - \frac{29671088210685600092828007224362106021396888627165601879319172906890380857411061399}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{16} + \frac{31881394136383757422566582170339807097276877429418523820837873028569896632939929997}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{15} - \frac{46026740707951386783246767215199646372288686649383903568848287470626637443413520017}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{14} - \frac{37091483669153639492921009628393925486876756376784991694579431629505847003108080995}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{13} - \frac{2186088250651998980182778140080238918512833040632584187200075252713407510214903035}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{12} + \frac{42784489248440608051823883184765358747247779894898353752018975570231449480615956265}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{11} - \frac{16208146655000510679654049248156770457204784609622067533850243708444691245963513584}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{10} - \frac{600281652975282255677984264078213456367645977004610071676287913670792625045188329}{3151891700036428537775156318128852305109463475801489811050805781850260138106753761} a^{9} - \frac{13898050378382835261279029971305680568593768676906061728711694825031306518485967390}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{8} - \frac{27901994254060337735709358731499370675806563002324423042634708526112571004023857149}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{7} - \frac{14337114648893132497492764526476692821551733087838571764116838061327964067364001138}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{6} + \frac{12484261139131902675766182677949151486523995873132779680488618190135838048756952311}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{5} - \frac{10658839418125269385354178919674908016619316529770807387486658065928222710051460412}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{4} - \frac{27895483493201057917610276685837253218340815981060705420371355506427821619360309443}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{3} + \frac{47177802224828550529897533098301766114188167999668899093369193206750379876984559421}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a^{2} - \frac{47948733224257983620647974534496630366766100443554633268227940999886391317014360486}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591} a - \frac{23572716663598219584697651956757882584072645679731893767552796533419517140260660606}{97708642701129284671029845861994421458393367749846184142574979237358064281309366591}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1536390870260 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{11}\times D_{11}$ (as 22T7):
| A solvable group of order 242 |
| The 77 conjugacy class representatives for $C_{11}\times D_{11}$ are not computed |
| Character table for $C_{11}\times D_{11}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||