Properties

Label 22.0.48963928726...7811.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,11^{11}\cdot 23^{20}$
Root discriminant $57.36$
Ramified primes $11, 23$
Class number $15499$ (GRH)
Class group $[15499]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15354571, -12720749, 23145134, -17363285, 18112705, -12150619, 9483883, -5688311, 3653567, -1963079, 1081334, -521318, 251537, -108112, 45646, -17468, 6491, -2122, 655, -183, 48, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 + 48*x^20 - 183*x^19 + 655*x^18 - 2122*x^17 + 6491*x^16 - 17468*x^15 + 45646*x^14 - 108112*x^13 + 251537*x^12 - 521318*x^11 + 1081334*x^10 - 1963079*x^9 + 3653567*x^8 - 5688311*x^7 + 9483883*x^6 - 12150619*x^5 + 18112705*x^4 - 17363285*x^3 + 23145134*x^2 - 12720749*x + 15354571)
 
gp: K = bnfinit(x^22 - 9*x^21 + 48*x^20 - 183*x^19 + 655*x^18 - 2122*x^17 + 6491*x^16 - 17468*x^15 + 45646*x^14 - 108112*x^13 + 251537*x^12 - 521318*x^11 + 1081334*x^10 - 1963079*x^9 + 3653567*x^8 - 5688311*x^7 + 9483883*x^6 - 12150619*x^5 + 18112705*x^4 - 17363285*x^3 + 23145134*x^2 - 12720749*x + 15354571, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} + 48 x^{20} - 183 x^{19} + 655 x^{18} - 2122 x^{17} + 6491 x^{16} - 17468 x^{15} + 45646 x^{14} - 108112 x^{13} + 251537 x^{12} - 521318 x^{11} + 1081334 x^{10} - 1963079 x^{9} + 3653567 x^{8} - 5688311 x^{7} + 9483883 x^{6} - 12150619 x^{5} + 18112705 x^{4} - 17363285 x^{3} + 23145134 x^{2} - 12720749 x + 15354571 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-489639287266880371204241478228795637811=-\,11^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $57.36$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(253=11\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{253}(1,·)$, $\chi_{253}(131,·)$, $\chi_{253}(133,·)$, $\chi_{253}(12,·)$, $\chi_{253}(142,·)$, $\chi_{253}(144,·)$, $\chi_{253}(210,·)$, $\chi_{253}(78,·)$, $\chi_{253}(87,·)$, $\chi_{253}(100,·)$, $\chi_{253}(219,·)$, $\chi_{253}(197,·)$, $\chi_{253}(32,·)$, $\chi_{253}(208,·)$, $\chi_{253}(98,·)$, $\chi_{253}(164,·)$, $\chi_{253}(232,·)$, $\chi_{253}(177,·)$, $\chi_{253}(243,·)$, $\chi_{253}(54,·)$, $\chi_{253}(186,·)$, $\chi_{253}(188,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{12}{47} a^{19} - \frac{1}{47} a^{18} - \frac{9}{47} a^{17} + \frac{15}{47} a^{16} + \frac{9}{47} a^{15} + \frac{3}{47} a^{14} + \frac{2}{47} a^{13} - \frac{6}{47} a^{12} + \frac{12}{47} a^{11} - \frac{17}{47} a^{10} - \frac{15}{47} a^{9} + \frac{13}{47} a^{8} + \frac{11}{47} a^{7} + \frac{6}{47} a^{6} + \frac{16}{47} a^{5} + \frac{22}{47} a^{4} - \frac{21}{47} a^{3} + \frac{20}{47} a^{2} - \frac{8}{47} a$, $\frac{1}{278445176511616137369420557399385127158749614155228131210266193} a^{21} - \frac{812574882666301842875453513237860597563402573755774013521513}{278445176511616137369420557399385127158749614155228131210266193} a^{20} - \frac{44692086554015659925213412266593927142224055711373561839620961}{278445176511616137369420557399385127158749614155228131210266193} a^{19} - \frac{92633959219051079103853436582030148424604970355093860830447579}{278445176511616137369420557399385127158749614155228131210266193} a^{18} + \frac{40766112382702123348458843784934372596914229210180805369713542}{278445176511616137369420557399385127158749614155228131210266193} a^{17} + \frac{120927258930627461097226071955391182497922244687810325418155592}{278445176511616137369420557399385127158749614155228131210266193} a^{16} - \frac{133257257144392901608447865362863753078137300103411126868339729}{278445176511616137369420557399385127158749614155228131210266193} a^{15} + \frac{3747829414627951674238827337392311418592470561871180718424247}{278445176511616137369420557399385127158749614155228131210266193} a^{14} - \frac{60029194682876377399486416381929475743963691769493848326035927}{278445176511616137369420557399385127158749614155228131210266193} a^{13} - \frac{95497039831896199446650399265540789874888495023127633634651317}{278445176511616137369420557399385127158749614155228131210266193} a^{12} - \frac{47050886648815620964273333208424406999440302092002096935937129}{278445176511616137369420557399385127158749614155228131210266193} a^{11} - \frac{2542303752210093611206014961255489796591810624553398134285676}{5924365457693960369562139519135853769335098173515492153409919} a^{10} + \frac{34183026399017368163557916031690636003584151490390597066050387}{278445176511616137369420557399385127158749614155228131210266193} a^{9} + \frac{98470092901517247893207132332207621268577921774318651952687698}{278445176511616137369420557399385127158749614155228131210266193} a^{8} + \frac{104964504068599140194797652981133688245683800540048531666465064}{278445176511616137369420557399385127158749614155228131210266193} a^{7} - \frac{35207826817178339082778214968505446431228153373240065656582873}{278445176511616137369420557399385127158749614155228131210266193} a^{6} + \frac{68803719446911969458964862343922651184255264643182930040596828}{278445176511616137369420557399385127158749614155228131210266193} a^{5} - \frac{77766755469594544130720223276095637129239550676151968753524559}{278445176511616137369420557399385127158749614155228131210266193} a^{4} + \frac{125757222537154693969902511005611523988538735190187707984735221}{278445176511616137369420557399385127158749614155228131210266193} a^{3} - \frac{94909693620128499206895699911010375758525424555517985458567342}{278445176511616137369420557399385127158749614155228131210266193} a^{2} - \frac{27210150844985322027547372061602879989844398779435964490591438}{278445176511616137369420557399385127158749614155228131210266193} a - \frac{1174707593182358074679031058298038968283456945279851419067286}{5924365457693960369562139519135853769335098173515492153409919}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{15499}$, which has order $15499$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-11}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ R $22$ $22$ $22$ R $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$