Normalized defining polynomial
\( x^{22} - x^{21} + 162 x^{20} - 162 x^{19} + 11432 x^{18} - 11432 x^{17} + 461105 x^{16} - 461105 x^{15} + 11726597 x^{14} - 11726597 x^{13} + 195729633 x^{12} - 195729633 x^{11} + 2165644489 x^{10} - 2165644489 x^{9} + 15708809124 x^{8} - 15708809124 x^{7} + 72590100591 x^{6} - 72590100591 x^{5} + 205313114014 x^{4} - 205313114014 x^{3} + 348245590008 x^{2} - 348245590008 x + 393724105097 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-481573447532424402907134681295965659189012467=-\,23^{21}\cdot 29^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(667=23\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{667}(1,·)$, $\chi_{667}(260,·)$, $\chi_{667}(581,·)$, $\chi_{667}(262,·)$, $\chi_{667}(521,·)$, $\chi_{667}(146,·)$, $\chi_{667}(405,·)$, $\chi_{667}(86,·)$, $\chi_{667}(407,·)$, $\chi_{667}(666,·)$, $\chi_{667}(28,·)$, $\chi_{667}(349,·)$, $\chi_{667}(608,·)$, $\chi_{667}(610,·)$, $\chi_{667}(550,·)$, $\chi_{667}(233,·)$, $\chi_{667}(434,·)$, $\chi_{667}(117,·)$, $\chi_{667}(57,·)$, $\chi_{667}(59,·)$, $\chi_{667}(318,·)$, $\chi_{667}(639,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{73138542583} a^{12} + \frac{30287213200}{73138542583} a^{11} + \frac{84}{73138542583} a^{10} - \frac{8317946256}{73138542583} a^{9} + \frac{2646}{73138542583} a^{8} - \frac{13486867419}{73138542583} a^{7} + \frac{38416}{73138542583} a^{6} - \frac{652405071}{73138542583} a^{5} + \frac{252105}{73138542583} a^{4} - \frac{3262025355}{73138542583} a^{3} + \frac{605052}{73138542583} a^{2} - \frac{4566835497}{73138542583} a + \frac{235298}{73138542583}$, $\frac{1}{73138542583} a^{13} + \frac{91}{73138542583} a^{11} + \frac{7405135349}{73138542583} a^{10} + \frac{3185}{73138542583} a^{9} + \frac{6389676349}{73138542583} a^{8} + \frac{53508}{73138542583} a^{7} - \frac{26299285907}{73138542583} a^{6} + \frac{436982}{73138542583} a^{5} + \frac{29561311262}{73138542583} a^{4} + \frac{1529437}{73138542583} a^{3} + \frac{30326046834}{73138542583} a^{2} + \frac{1529437}{73138542583} a + \frac{25759211337}{73138542583}$, $\frac{1}{73138542583} a^{14} + \frac{30533352303}{73138542583} a^{11} - \frac{4459}{73138542583} a^{10} + \frac{31937359815}{73138542583} a^{9} - \frac{187278}{73138542583} a^{8} + \frac{30788967894}{73138542583} a^{7} - \frac{3058874}{73138542583} a^{6} + \frac{15791630140}{73138542583} a^{5} - \frac{21412118}{73138542583} a^{4} + \frac{34616183807}{73138542583} a^{3} - \frac{53530295}{73138542583} a^{2} + \frac{2509986066}{73138542583} a - \frac{21412118}{73138542583}$, $\frac{1}{73138542583} a^{15} - \frac{5145}{73138542583} a^{11} + \frac{26984756768}{73138542583} a^{10} - \frac{240100}{73138542583} a^{9} - \frac{15510214212}{73138542583} a^{8} - \frac{4537890}{73138542583} a^{7} - \frac{30663038337}{73138542583} a^{6} - \frac{39530064}{73138542583} a^{5} + \frac{36025068993}{73138542583} a^{4} - \frac{144120025}{73138542583} a^{3} + \frac{20519019029}{73138542583} a^{2} - \frac{148237740}{73138542583} a + \frac{35446279379}{73138542583}$, $\frac{1}{73138542583} a^{16} - \frac{3537573605}{73138542583} a^{11} + \frac{192080}{73138542583} a^{10} - \frac{25296290277}{73138542583} a^{9} + \frac{9075780}{73138542583} a^{8} - \frac{12118997825}{73138542583} a^{7} + \frac{158120256}{73138542583} a^{6} - \frac{29364605067}{73138542583} a^{5} + \frac{1152960200}{73138542583} a^{4} - \frac{13875180939}{73138542583} a^{3} + \frac{2964754800}{73138542583} a^{2} + \frac{16549816457}{73138542583} a + \frac{1210608210}{73138542583}$, $\frac{1}{73138542583} a^{17} + \frac{233240}{73138542583} a^{11} - \frac{20694277789}{73138542583} a^{10} + \frac{12245100}{73138542583} a^{9} - \frac{13432689619}{73138542583} a^{8} + \frac{246861216}{73138542583} a^{7} - \frac{21349114601}{73138542583} a^{6} + \frac{2240036960}{73138542583} a^{5} - \frac{25269749516}{73138542583} a^{4} + \frac{8400138600}{73138542583} a^{3} + \frac{33085977422}{73138542583} a^{2} + \frac{8820145530}{73138542583} a - \frac{5759027833}{73138542583}$, $\frac{1}{73138542583} a^{18} + \frac{22111418432}{73138542583} a^{11} - \frac{7347060}{73138542583} a^{10} - \frac{8628496837}{73138542583} a^{9} - \frac{370291824}{73138542583} a^{8} - \frac{33108801871}{73138542583} a^{7} - \frac{6720110880}{73138542583} a^{6} + \frac{13520437884}{73138542583} a^{5} + \frac{22737710983}{73138542583} a^{4} + \frac{7621286673}{73138542583} a^{3} + \frac{13974902216}{73138542583} a^{2} - \frac{26781886365}{73138542583} a + \frac{18257637063}{73138542583}$, $\frac{1}{73138542583} a^{19} - \frac{9306276}{73138542583} a^{11} + \frac{35614462033}{73138542583} a^{10} - \frac{521151456}{73138542583} a^{9} - \frac{29087906543}{73138542583} a^{8} - \frac{10944180576}{73138542583} a^{7} + \frac{12303513134}{73138542583} a^{6} - \frac{29007142793}{73138542583} a^{5} + \frac{8777535824}{73138542583} a^{4} - \frac{25333738915}{73138542583} a^{3} - \frac{9379179886}{73138542583} a^{2} + \frac{21736373546}{73138542583} a + \frac{10830971552}{73138542583}$, $\frac{1}{73138542583} a^{20} + \frac{31795224999}{73138542583} a^{11} + \frac{260575728}{73138542583} a^{10} - \frac{30614987829}{73138542583} a^{9} + \frac{13680225720}{73138542583} a^{8} - \frac{30454762874}{73138542583} a^{7} + \frac{35948585691}{73138542583} a^{6} - \frac{3041547193}{73138542583} a^{5} - \frac{19608390591}{73138542583} a^{4} + \frac{4663947612}{73138542583} a^{3} + \frac{20849501007}{73138542583} a^{2} + \frac{1235933016}{73138542583} a - \frac{4408147242}{73138542583}$, $\frac{1}{73138542583} a^{21} + \frac{342005643}{73138542583} a^{11} + \frac{4712187826}{73138542583} a^{10} + \frac{19950329175}{73138542583} a^{9} + \frac{21842402805}{73138542583} a^{8} - \frac{7904145318}{73138542583} a^{7} - \frac{34743972677}{73138542583} a^{6} + \frac{10019359567}{73138542583} a^{5} + \frac{34317043768}{73138542583} a^{4} + \frac{22711166631}{73138542583} a^{3} + \frac{13892529724}{73138542583} a^{2} - \frac{16429523885}{73138542583} a - \frac{11330999632}{73138542583}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-667}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | R | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 29 | Data not computed | ||||||