Normalized defining polynomial
\( x^{22} - x^{21} + 21 x^{20} - 40 x^{19} + 325 x^{18} - 597 x^{17} + 2667 x^{16} - 4827 x^{15} + 15510 x^{14} - 22580 x^{13} + 42773 x^{12} - 36183 x^{11} + 50648 x^{10} - 29240 x^{9} + 42285 x^{8} - 15537 x^{7} + 18462 x^{6} - 4332 x^{5} + 5605 x^{4} - 760 x^{3} + 441 x^{2} + 44 x + 16 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-45838394542255573972509544658660888671875=-\,3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{18} + \frac{1}{3} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{19} - \frac{2}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{85149} a^{20} - \frac{1132}{85149} a^{19} + \frac{128}{9461} a^{18} - \frac{4018}{28383} a^{17} + \frac{4714}{28383} a^{16} + \frac{3841}{28383} a^{15} + \frac{2713}{28383} a^{14} - \frac{1304}{9461} a^{13} - \frac{872}{28383} a^{12} - \frac{5048}{85149} a^{11} - \frac{23446}{85149} a^{10} - \frac{4339}{28383} a^{9} + \frac{433}{9461} a^{8} + \frac{12466}{28383} a^{7} - \frac{11153}{28383} a^{6} - \frac{9608}{28383} a^{5} - \frac{12601}{28383} a^{4} + \frac{10774}{28383} a^{3} + \frac{12910}{85149} a^{2} - \frac{21361}{85149} a + \frac{3670}{9461}$, $\frac{1}{350232408000301995010299381256198908} a^{21} + \frac{518243709899895822445913730515}{350232408000301995010299381256198908} a^{20} - \frac{740661317235952272926148913995635}{38914712000033555001144375695133212} a^{19} - \frac{592184640954334491153745108147855}{87558102000075498752574845314049727} a^{18} + \frac{13330019996902567650254788129343767}{116744136000100665003433127085399636} a^{17} - \frac{9247663846139829533952228330805903}{116744136000100665003433127085399636} a^{16} + \frac{9452609158538588228214107297871469}{116744136000100665003433127085399636} a^{15} - \frac{14653469105147627148735288942639545}{116744136000100665003433127085399636} a^{14} + \frac{4016804536024267602701301552362977}{58372068000050332501716563542699818} a^{13} - \frac{3862811428715500672235626974280685}{87558102000075498752574845314049727} a^{12} + \frac{34074332291926711933679622108648401}{350232408000301995010299381256198908} a^{11} - \frac{12982848149076237661236407997304419}{38914712000033555001144375695133212} a^{10} - \frac{13831553435293011350866194806862295}{87558102000075498752574845314049727} a^{9} - \frac{2411118334238758057662810161387959}{29186034000025166250858281771349909} a^{8} + \frac{27263532715266979903785463711727267}{116744136000100665003433127085399636} a^{7} + \frac{48759508823731123766281179664183993}{116744136000100665003433127085399636} a^{6} + \frac{16269282934032645451398631051659955}{58372068000050332501716563542699818} a^{5} + \frac{2448245085676215609002396778431636}{29186034000025166250858281771349909} a^{4} - \frac{59272884145287715532034466754523227}{350232408000301995010299381256198908} a^{3} + \frac{25863765080426175107553426427866599}{87558102000075498752574845314049727} a^{2} - \frac{45000190385953274310409491120392561}{116744136000100665003433127085399636} a + \frac{28596379252675640123940268203160388}{87558102000075498752574845314049727}$
Class group and class number
$C_{93}$, which has order $93$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{104522909429524397417462995231}{12339513370690272170323763564676} a^{21} - \frac{135615540564984640144146330223}{12339513370690272170323763564676} a^{20} + \frac{739580511054785356172269075945}{4113171123563424056774587854892} a^{19} - \frac{402002291561820303504300494085}{1028292780890856014193646963723} a^{18} + \frac{35058102879591172074202065471815}{12339513370690272170323763564676} a^{17} - \frac{72161729064127908067782060231227}{12339513370690272170323763564676} a^{16} + \frac{294862467311817794895570220987565}{12339513370690272170323763564676} a^{15} - \frac{582330242312467355615176475069345}{12339513370690272170323763564676} a^{14} + \frac{291755928291358940500190439434635}{2056585561781712028387293927446} a^{13} - \frac{700319487607551004140178138418420}{3084878342672568042580940891169} a^{12} + \frac{5050201182831686540261803195258463}{12339513370690272170323763564676} a^{11} - \frac{4915234392605293094308966267421545}{12339513370690272170323763564676} a^{10} + \frac{1517154493768489799418971905275610}{3084878342672568042580940891169} a^{9} - \frac{1074441319612265449921678840868285}{3084878342672568042580940891169} a^{8} + \frac{4930183336038027177249718603848095}{12339513370690272170323763564676} a^{7} - \frac{2674287955956884106600587277755207}{12339513370690272170323763564676} a^{6} + \frac{1050844151958840476128175392408489}{6169756685345136085161881782338} a^{5} - \frac{72801386561686339033292963230785}{1028292780890856014193646963723} a^{4} + \frac{599846256212853706900949428000975}{12339513370690272170323763564676} a^{3} - \frac{57477816529598070181634585737870}{3084878342672568042580940891169} a^{2} + \frac{37821646282860949356550046746651}{12339513370690272170323763564676} a + \frac{687313319118049557177777198065}{3084878342672568042580940891169} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12475736338.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{11}:C_5$ (as 22T5):
| A solvable group of order 110 |
| The 14 conjugacy class representatives for $C_2\times C_{11}:C_5$ |
| Character table for $C_2\times C_{11}:C_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |