Normalized defining polynomial
\( x^{22} - 9 x^{21} + 103 x^{20} - 633 x^{19} + 4455 x^{18} - 21547 x^{17} + 115721 x^{16} - 463428 x^{15} + 2047836 x^{14} - 6940762 x^{13} + 26133577 x^{12} - 75415028 x^{11} + 246269894 x^{10} - 601120919 x^{9} + 1716577617 x^{8} - 3469345651 x^{7} + 8681282523 x^{6} - 13884271574 x^{5} + 30359360950 x^{4} - 34852602875 x^{3} + 66136100859 x^{2} - 41797446694 x + 68117781041 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43604905791095263021253936224725999514116031=-\,23^{20}\cdot 31^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(713=23\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{713}(1,·)$, $\chi_{713}(588,·)$, $\chi_{713}(650,·)$, $\chi_{713}(652,·)$, $\chi_{713}(464,·)$, $\chi_{713}(216,·)$, $\chi_{713}(466,·)$, $\chi_{713}(404,·)$, $\chi_{713}(278,·)$, $\chi_{713}(280,·)$, $\chi_{713}(154,·)$, $\chi_{713}(156,·)$, $\chi_{713}(94,·)$, $\chi_{713}(32,·)$, $\chi_{713}(123,·)$, $\chi_{713}(340,·)$, $\chi_{713}(683,·)$, $\chi_{713}(495,·)$, $\chi_{713}(371,·)$, $\chi_{713}(311,·)$, $\chi_{713}(185,·)$, $\chi_{713}(187,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{47} a^{17} - \frac{23}{47} a^{16} - \frac{9}{47} a^{15} + \frac{19}{47} a^{14} + \frac{8}{47} a^{13} + \frac{12}{47} a^{12} + \frac{14}{47} a^{11} + \frac{2}{47} a^{10} - \frac{6}{47} a^{9} - \frac{20}{47} a^{8} + \frac{23}{47} a^{7} - \frac{20}{47} a^{6} + \frac{13}{47} a^{5} - \frac{13}{47} a^{4} + \frac{3}{47} a^{3} + \frac{4}{47} a^{2} + \frac{21}{47} a + \frac{18}{47}$, $\frac{1}{47} a^{18} - \frac{21}{47} a^{16} + \frac{22}{47} a^{14} + \frac{8}{47} a^{13} + \frac{8}{47} a^{12} - \frac{5}{47} a^{11} - \frac{7}{47} a^{10} - \frac{17}{47} a^{9} - \frac{14}{47} a^{8} - \frac{8}{47} a^{7} + \frac{23}{47} a^{6} + \frac{4}{47} a^{5} - \frac{14}{47} a^{4} - \frac{21}{47} a^{3} + \frac{19}{47} a^{2} - \frac{16}{47} a - \frac{9}{47}$, $\frac{1}{47} a^{19} - \frac{13}{47} a^{16} + \frac{21}{47} a^{15} - \frac{16}{47} a^{14} - \frac{12}{47} a^{13} + \frac{12}{47} a^{12} + \frac{5}{47} a^{11} - \frac{22}{47} a^{10} + \frac{1}{47} a^{9} - \frac{5}{47} a^{8} - \frac{11}{47} a^{7} + \frac{7}{47} a^{6} - \frac{23}{47} a^{5} - \frac{12}{47} a^{4} - \frac{12}{47} a^{3} + \frac{21}{47} a^{2} + \frac{9}{47} a + \frac{2}{47}$, $\frac{1}{47} a^{20} + \frac{4}{47} a^{16} + \frac{8}{47} a^{15} + \frac{22}{47} a^{13} + \frac{20}{47} a^{12} + \frac{19}{47} a^{11} - \frac{20}{47} a^{10} + \frac{11}{47} a^{9} + \frac{11}{47} a^{8} - \frac{23}{47} a^{7} - \frac{1}{47} a^{6} + \frac{16}{47} a^{5} + \frac{7}{47} a^{4} + \frac{13}{47} a^{3} + \frac{14}{47} a^{2} - \frac{7}{47} a - \frac{1}{47}$, $\frac{1}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{21} + \frac{7516889370645302330534152177049021439682490565704238519108444154669174365034}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{20} + \frac{210016551140209516645437650802949509886323061038168444104658569876983107543}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{19} + \frac{4323227326338993424606013978918254158422579355707314022582538276529168728387}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{18} - \frac{10739616269218480902525193028959409309083359251090550634669855666216212429280}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{17} + \frac{257459695631682311796386729289160543473183913016123125857908232844738181903583}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{16} - \frac{268922592878468190544835550727224991888694856506429008614758565689258161820144}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{15} + \frac{251366665581091180576286697445527284094704548230998544042874331605702744811607}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{14} - \frac{173541905865268448067242603615287779716761762102130257399690290495719783309932}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{13} - \frac{586872893693892760175258049595440644302085508746554142125996977788673217004623}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{12} - \frac{80979512904310513842631369684750247824964848851815727132243282721689975737802}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{11} - \frac{314163998815408027418279442230912812890808399296416717394806315040384284400345}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{10} - \frac{241843409847998440824224409186925723397081904926481532605602567001934459675917}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{9} + \frac{374222462293599007389754553878338766042024925411266972214170482208287734261233}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{8} + \frac{552910552891988231784051813591616148256693123696432299183553734518265293294292}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{7} - \frac{222200988019830042442500978850123333416054347354683463095073385685269790493247}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{6} - \frac{92197485293670427731534173134214493837124397404233016668997368702280155671544}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{5} - \frac{706943111025705839917526609246800012083155860589437801213537275380276871954803}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{4} + \frac{566840111058401689327088161923448550573439952578859936536971773000862972168484}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{3} - \frac{333191049128292409025171540809016035633731925116962755227246174339148665994439}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a^{2} + \frac{212146141656232203186824076469340224503837618002850932109355070778094976380485}{1556442115134851948898199241611841913085058448358302573221612453547341056746011} a - \frac{146326702310874850060167959389751987186995212331592001399291161807501008558}{1352252054852173717548392043103251010499616375637100411139541662508550005861}$
Class group and class number
$C_{3128667}$, which has order $3128667$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038656.82438 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-31}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | R | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 31 | Data not computed | ||||||