Normalized defining polynomial
\( x^{22} + 220 x^{20} + 18876 x^{18} + 825704 x^{16} + 20058896 x^{14} + 275949696 x^{12} + 2128407424 x^{10} + 9128116096 x^{8} + 20992435200 x^{6} + 23394438144 x^{4} + 9845535744 x^{2} + 1330255872 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-42765144951456754503592723360164151789017189226381312=-\,2^{33}\cdot 11^{41}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $246.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(968=2^{3}\cdot 11^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{968}(1,·)$, $\chi_{968}(901,·)$, $\chi_{968}(705,·)$, $\chi_{968}(265,·)$, $\chi_{968}(461,·)$, $\chi_{968}(109,·)$, $\chi_{968}(529,·)$, $\chi_{968}(21,·)$, $\chi_{968}(89,·)$, $\chi_{968}(793,·)$, $\chi_{968}(285,·)$, $\chi_{968}(197,·)$, $\chi_{968}(353,·)$, $\chi_{968}(549,·)$, $\chi_{968}(881,·)$, $\chi_{968}(617,·)$, $\chi_{968}(813,·)$, $\chi_{968}(177,·)$, $\chi_{968}(373,·)$, $\chi_{968}(441,·)$, $\chi_{968}(637,·)$, $\chi_{968}(725,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{5} - \frac{1}{3} a$, $\frac{1}{72} a^{6} + \frac{1}{36} a^{4} - \frac{1}{9} a^{2}$, $\frac{1}{72} a^{7} + \frac{1}{36} a^{5} + \frac{1}{18} a^{3} - \frac{1}{3} a$, $\frac{1}{144} a^{8} - \frac{1}{18} a^{2}$, $\frac{1}{1296} a^{9} - \frac{1}{216} a^{7} + \frac{1}{108} a^{5} - \frac{5}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{2592} a^{10} - \frac{1}{432} a^{8} + \frac{1}{216} a^{6} - \frac{5}{162} a^{4} + \frac{1}{18} a^{2}$, $\frac{1}{2592} a^{11} + \frac{1}{216} a^{7} + \frac{2}{81} a^{5} - \frac{2}{27} a^{3}$, $\frac{1}{15552} a^{12} - \frac{1}{7776} a^{10} - \frac{1}{1296} a^{8} - \frac{1}{486} a^{6} - \frac{11}{972} a^{4} + \frac{1}{27} a^{2}$, $\frac{1}{15552} a^{13} - \frac{1}{7776} a^{11} - \frac{13}{1944} a^{7} - \frac{1}{486} a^{5} - \frac{2}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{31104} a^{14} - \frac{1}{7776} a^{10} + \frac{11}{3888} a^{8} - \frac{1}{324} a^{6} - \frac{23}{972} a^{4} + \frac{1}{27} a^{2}$, $\frac{1}{93312} a^{15} + \frac{1}{46656} a^{13} + \frac{1}{5832} a^{11} - \frac{1}{11664} a^{9} - \frac{19}{5832} a^{7} + \frac{95}{2916} a^{5} + \frac{1}{18} a^{3} - \frac{2}{9} a$, $\frac{1}{559872} a^{16} + \frac{1}{69984} a^{14} + \frac{1}{139968} a^{12} - \frac{1}{69984} a^{10} + \frac{13}{4374} a^{8} + \frac{1}{2187} a^{6} - \frac{31}{972} a^{4} + \frac{1}{27} a^{2}$, $\frac{1}{559872} a^{17} + \frac{1}{279936} a^{15} - \frac{1}{69984} a^{13} - \frac{13}{69984} a^{11} - \frac{1}{34992} a^{9} - \frac{97}{17496} a^{7} + \frac{7}{729} a^{5} - \frac{4}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{10077696} a^{18} - \frac{1}{1679616} a^{16} - \frac{1}{93312} a^{14} + \frac{19}{1259712} a^{12} + \frac{7}{52488} a^{10} + \frac{25}{8748} a^{8} + \frac{1015}{157464} a^{6} + \frac{283}{8748} a^{4} - \frac{28}{243} a^{2} - \frac{1}{3}$, $\frac{1}{30233088} a^{19} - \frac{1}{5038848} a^{17} - \frac{1}{279936} a^{15} - \frac{31}{1889568} a^{13} - \frac{107}{629856} a^{11} - \frac{35}{104976} a^{9} + \frac{517}{118098} a^{7} + \frac{679}{26244} a^{5} - \frac{11}{1458} a^{3} - \frac{2}{9} a$, $\frac{1}{51863933309841912259584} a^{20} + \frac{6850221677681}{180083101770284417568} a^{18} - \frac{291064062306739}{1440664814162275340544} a^{16} - \frac{28862362723814999}{6482991663730239032448} a^{14} - \frac{7316806874925065}{540249305310853252704} a^{12} - \frac{34728852883766767}{180083101770284417568} a^{10} + \frac{76046670093793969}{50648372372892492441} a^{8} + \frac{281186432189229419}{67531163163856656588} a^{6} + \frac{70405034275271389}{7503462573761850732} a^{4} - \frac{10389600570027751}{208429515937829187} a^{2} + \frac{18410041417379}{2573203900467027}$, $\frac{1}{51863933309841912259584} a^{21} + \frac{128697288097055}{25931966654920956129792} a^{19} - \frac{1932194178901}{540249305310853252704} a^{17} - \frac{1425881904902939}{1620747915932559758112} a^{15} + \frac{1159838253346021}{405186978983139939528} a^{13} - \frac{6204476433988169}{270124652655426626352} a^{11} + \frac{236356035422766217}{810373957966279879056} a^{9} - \frac{1962542272360356781}{405186978983139939528} a^{7} + \frac{115632837609523451}{5627596930321388049} a^{5} + \frac{16006603131812242}{625288547813487561} a^{3} + \frac{18410041417379}{2573203900467027} a$
Class group and class number
$C_{914894}$, which has order $914894$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 285114946276.13544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-22}) \), 11.11.672749994932560009201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | $22$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||