Normalized defining polynomial
\( x^{22} + 81 x^{20} + 2602 x^{18} + 43459 x^{16} + 416416 x^{14} + 2360004 x^{12} + 7761381 x^{10} + 13598526 x^{8} + 9845506 x^{6} + 250429 x^{4} + 1687 x^{2} + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4078120343870794568028632139836020814044463104=-\,2^{22}\cdot 89^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(356=2^{2}\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{356}(1,·)$, $\chi_{356}(67,·)$, $\chi_{356}(331,·)$, $\chi_{356}(269,·)$, $\chi_{356}(271,·)$, $\chi_{356}(275,·)$, $\chi_{356}(153,·)$, $\chi_{356}(217,·)$, $\chi_{356}(283,·)$, $\chi_{356}(93,·)$, $\chi_{356}(223,·)$, $\chi_{356}(97,·)$, $\chi_{356}(91,·)$, $\chi_{356}(167,·)$, $\chi_{356}(105,·)$, $\chi_{356}(299,·)$, $\chi_{356}(45,·)$, $\chi_{356}(179,·)$, $\chi_{356}(245,·)$, $\chi_{356}(39,·)$, $\chi_{356}(121,·)$, $\chi_{356}(345,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6623} a^{18} - \frac{2613}{6623} a^{16} - \frac{2954}{6623} a^{14} - \frac{690}{6623} a^{12} - \frac{1477}{6623} a^{10} - \frac{1298}{6623} a^{8} + \frac{3184}{6623} a^{6} - \frac{683}{6623} a^{4} - \frac{521}{6623} a^{2} + \frac{2759}{6623}$, $\frac{1}{6623} a^{19} - \frac{2613}{6623} a^{17} - \frac{2954}{6623} a^{15} - \frac{690}{6623} a^{13} - \frac{1477}{6623} a^{11} - \frac{1298}{6623} a^{9} + \frac{3184}{6623} a^{7} - \frac{683}{6623} a^{5} - \frac{521}{6623} a^{3} + \frac{2759}{6623} a$, $\frac{1}{59999649265306446430139} a^{20} - \frac{1957641981089856857}{59999649265306446430139} a^{18} + \frac{13203172452822583116888}{59999649265306446430139} a^{16} - \frac{8361853895425950293933}{59999649265306446430139} a^{14} + \frac{10416280292646196281415}{59999649265306446430139} a^{12} + \frac{29355330266147790008535}{59999649265306446430139} a^{10} - \frac{24854331917112092083603}{59999649265306446430139} a^{8} + \frac{16205052955264457126882}{59999649265306446430139} a^{6} - \frac{13217949487366278099118}{59999649265306446430139} a^{4} - \frac{4197991993675682776}{16055565765401778547} a^{2} - \frac{24720034784300627693482}{59999649265306446430139}$, $\frac{1}{59999649265306446430139} a^{21} - \frac{1957641981089856857}{59999649265306446430139} a^{19} + \frac{13203172452822583116888}{59999649265306446430139} a^{17} - \frac{8361853895425950293933}{59999649265306446430139} a^{15} + \frac{10416280292646196281415}{59999649265306446430139} a^{13} + \frac{29355330266147790008535}{59999649265306446430139} a^{11} - \frac{24854331917112092083603}{59999649265306446430139} a^{9} + \frac{16205052955264457126882}{59999649265306446430139} a^{7} - \frac{13217949487366278099118}{59999649265306446430139} a^{5} - \frac{4197991993675682776}{16055565765401778547} a^{3} - \frac{24720034784300627693482}{59999649265306446430139} a$
Class group and class number
$C_{117139}$, which has order $117139$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{299199715661299}{15849521979666119} a^{21} - \frac{135394620934031}{88544815528861} a^{19} - \frac{778554563412431617}{15849521979666119} a^{17} - \frac{13004089685279283474}{15849521979666119} a^{15} - \frac{124610727144956560274}{15849521979666119} a^{13} - \frac{706292230713837293384}{15849521979666119} a^{11} - \frac{2323195132748317167612}{15849521979666119} a^{9} - \frac{4071844310951381513727}{15849521979666119} a^{7} - \frac{2951161919911943756766}{15849521979666119} a^{5} - \frac{78746404027271354940}{15849521979666119} a^{3} - \frac{669695610289093554}{15849521979666119} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $89$ | 89.11.10.1 | $x^{11} - 89$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 89.11.10.1 | $x^{11} - 89$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |