Properties

Label 22.0.39897688208...8879.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,13^{11}\cdot 67^{21}$
Root discriminant $199.55$
Ramified primes $13, 67$
Class number $63265334$ (GRH)
Class group $[63265334]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81132029807, 67713149325, 52753103834, 30616690773, 38829007897, 47768698105, 50771931117, 38502084388, 21693864639, 9684850830, 3698021698, 1212821214, 322791094, 82563250, 17383054, 2979464, 645544, 49907, 15645, 241, 203, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 203*x^20 + 241*x^19 + 15645*x^18 + 49907*x^17 + 645544*x^16 + 2979464*x^15 + 17383054*x^14 + 82563250*x^13 + 322791094*x^12 + 1212821214*x^11 + 3698021698*x^10 + 9684850830*x^9 + 21693864639*x^8 + 38502084388*x^7 + 50771931117*x^6 + 47768698105*x^5 + 38829007897*x^4 + 30616690773*x^3 + 52753103834*x^2 + 67713149325*x + 81132029807)
 
gp: K = bnfinit(x^22 - x^21 + 203*x^20 + 241*x^19 + 15645*x^18 + 49907*x^17 + 645544*x^16 + 2979464*x^15 + 17383054*x^14 + 82563250*x^13 + 322791094*x^12 + 1212821214*x^11 + 3698021698*x^10 + 9684850830*x^9 + 21693864639*x^8 + 38502084388*x^7 + 50771931117*x^6 + 47768698105*x^5 + 38829007897*x^4 + 30616690773*x^3 + 52753103834*x^2 + 67713149325*x + 81132029807, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 203 x^{20} + 241 x^{19} + 15645 x^{18} + 49907 x^{17} + 645544 x^{16} + 2979464 x^{15} + 17383054 x^{14} + 82563250 x^{13} + 322791094 x^{12} + 1212821214 x^{11} + 3698021698 x^{10} + 9684850830 x^{9} + 21693864639 x^{8} + 38502084388 x^{7} + 50771931117 x^{6} + 47768698105 x^{5} + 38829007897 x^{4} + 30616690773 x^{3} + 52753103834 x^{2} + 67713149325 x + 81132029807 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-398976882084318595545873356311326226309728822028879=-\,13^{11}\cdot 67^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $199.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(871=13\cdot 67\)
Dirichlet character group:    $\lbrace$$\chi_{871}(1,·)$, $\chi_{871}(259,·)$, $\chi_{871}(196,·)$, $\chi_{871}(454,·)$, $\chi_{871}(779,·)$, $\chi_{871}(14,·)$, $\chi_{871}(131,·)$, $\chi_{871}(142,·)$, $\chi_{871}(857,·)$, $\chi_{871}(729,·)$, $\chi_{871}(92,·)$, $\chi_{871}(417,·)$, $\chi_{871}(675,·)$, $\chi_{871}(612,·)$, $\chi_{871}(870,·)$, $\chi_{871}(40,·)$, $\chi_{871}(740,·)$, $\chi_{871}(560,·)$, $\chi_{871}(625,·)$, $\chi_{871}(246,·)$, $\chi_{871}(311,·)$, $\chi_{871}(831,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{29} a^{16} + \frac{1}{29} a^{15} - \frac{4}{29} a^{14} + \frac{2}{29} a^{13} + \frac{13}{29} a^{12} - \frac{13}{29} a^{11} + \frac{14}{29} a^{10} + \frac{6}{29} a^{9} + \frac{1}{29} a^{8} - \frac{8}{29} a^{7} - \frac{10}{29} a^{5} - \frac{8}{29} a^{4} + \frac{2}{29} a^{3} - \frac{10}{29} a^{2} - \frac{11}{29} a - \frac{9}{29}$, $\frac{1}{29} a^{17} - \frac{5}{29} a^{15} + \frac{6}{29} a^{14} + \frac{11}{29} a^{13} + \frac{3}{29} a^{12} - \frac{2}{29} a^{11} - \frac{8}{29} a^{10} - \frac{5}{29} a^{9} - \frac{9}{29} a^{8} + \frac{8}{29} a^{7} - \frac{10}{29} a^{6} + \frac{2}{29} a^{5} + \frac{10}{29} a^{4} - \frac{12}{29} a^{3} - \frac{1}{29} a^{2} + \frac{2}{29} a + \frac{9}{29}$, $\frac{1}{29} a^{18} + \frac{11}{29} a^{15} - \frac{9}{29} a^{14} + \frac{13}{29} a^{13} + \frac{5}{29} a^{12} + \frac{14}{29} a^{11} + \frac{7}{29} a^{10} - \frac{8}{29} a^{9} + \frac{13}{29} a^{8} + \frac{8}{29} a^{7} + \frac{2}{29} a^{6} - \frac{11}{29} a^{5} + \frac{6}{29} a^{4} + \frac{9}{29} a^{3} + \frac{10}{29} a^{2} + \frac{12}{29} a + \frac{13}{29}$, $\frac{1}{2813} a^{19} - \frac{1}{97} a^{18} - \frac{42}{2813} a^{17} - \frac{23}{2813} a^{16} + \frac{428}{2813} a^{15} + \frac{245}{2813} a^{14} - \frac{177}{2813} a^{13} + \frac{606}{2813} a^{12} - \frac{395}{2813} a^{11} - \frac{148}{2813} a^{10} - \frac{126}{2813} a^{9} - \frac{1301}{2813} a^{8} + \frac{895}{2813} a^{7} + \frac{32}{2813} a^{6} - \frac{260}{2813} a^{5} + \frac{151}{2813} a^{4} + \frac{243}{2813} a^{3} - \frac{766}{2813} a^{2} - \frac{248}{2813} a + \frac{392}{2813}$, $\frac{1}{745588463} a^{20} - \frac{916}{7686479} a^{19} + \frac{4851833}{745588463} a^{18} - \frac{637076}{745588463} a^{17} - \frac{3411826}{745588463} a^{16} - \frac{40111}{745588463} a^{15} - \frac{252742189}{745588463} a^{14} + \frac{135107646}{745588463} a^{13} - \frac{366216506}{745588463} a^{12} + \frac{47747220}{745588463} a^{11} - \frac{184416647}{745588463} a^{10} + \frac{351520620}{745588463} a^{9} + \frac{338588226}{745588463} a^{8} + \frac{329113619}{745588463} a^{7} + \frac{71687160}{745588463} a^{6} + \frac{142698138}{745588463} a^{5} + \frac{246138630}{745588463} a^{4} - \frac{180023488}{745588463} a^{3} - \frac{340135308}{745588463} a^{2} + \frac{103611025}{745588463} a - \frac{209759280}{745588463}$, $\frac{1}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{21} - \frac{654413152081751057400331651651984018169404500627590111390176822206609377480152883244935181345958358}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{20} - \frac{322785747059787558468341805441145451795343042438297935041231237274439997061864205817200347038473697540662}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{19} - \frac{806577910248033382250418278998569814080252638912331780518454844166595840876671511512757812503864773457060}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{18} - \frac{16145793474355671819274807390310158281387760268416691657713782435659896111753562038972791613813846850273670}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{17} + \frac{51922389200468833674191556226690938267390496664421143399699059086122656540233995616622773185020462494016121}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{16} - \frac{463858582241190982175490435986071922119882273205291333261153976480213166682967363434815558432648449837979450}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{15} - \frac{135516490191616490831869863619338535477823285985675074942462428343417562692920677030027111931212734169055783}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{14} + \frac{36814084691131369937349778326468948631682613619234283148275263595016834832640229498399081541217996419987577}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{13} + \frac{102608052160296928717929604733298199536902149074034395595025072381265380680384151208320324964891361260462204}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{12} - \frac{463888577765818324357546728197147818372943539487921940172192386884803676133979027744430483918190065211962115}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{11} + \frac{618153430144378981485349091893545400270834671198164721753423126093800258090887137740728538308125470534710765}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{10} + \frac{247150401109152640565116410078398233198506579067669555835905417826413063928618254176032154751706994613208091}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{9} + \frac{1186246323559908602080835926274663520062600478224945011565425011558496325260541803990572267959795502235456325}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{8} + \frac{264714536241662761340131273372182777606516379916374790731094952927372745458474939040574986893995342939868580}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{7} + \frac{1161619030742455665915702488800951235180066946952648143284322218753112355901363211540042218446591375915075889}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{6} - \frac{41668672251412274774699013599422625128044995862871035402086090724338897607203575235179741900247331839687369}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{5} - \frac{628671274882243027516048835466463091484092970357082973297212328814612016905358837123708478682609669015537777}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{4} - \frac{147616087955359734386362432950406918946352000860499583695567072913169760206560057242569207881029126751792067}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{3} + \frac{482870528523860179315390777437135757208881709530444225313176850588650256426321358949859728641644997601416838}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a^{2} - \frac{207390395315751750852376110100330791024749634334298998440132119518388469256074522318899293969004600723530984}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803} a - \frac{1496734409382782089670486651418644972136150438473199266296112530475821250885269281166386780406265761301022121}{3024806308361963304297639765351018265334052779749819668416154526058985038209792690266106773550762807536702803}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{63265334}$, which has order $63265334$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 338444542.042557 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-871}) \), 11.11.1822837804551761449.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ $22$ $22$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
67Data not computed