Properties

Label 22.0.39785189666...8304.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,2^{22}\cdot 199^{20}$
Root discriminant $245.98$
Ramified primes $2, 199$
Class number $2097569$ (GRH)
Class group $[2097569]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![939238609, 0, 8830679464, 0, 15697884460, 0, 11925395238, 0, 4729178714, 0, 1056115843, 0, 137334967, 0, 10635319, 0, 490585, 0, 13028, 0, 181, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 181*x^20 + 13028*x^18 + 490585*x^16 + 10635319*x^14 + 137334967*x^12 + 1056115843*x^10 + 4729178714*x^8 + 11925395238*x^6 + 15697884460*x^4 + 8830679464*x^2 + 939238609)
 
gp: K = bnfinit(x^22 + 181*x^20 + 13028*x^18 + 490585*x^16 + 10635319*x^14 + 137334967*x^12 + 1056115843*x^10 + 4729178714*x^8 + 11925395238*x^6 + 15697884460*x^4 + 8830679464*x^2 + 939238609, 1)
 

Normalized defining polynomial

\( x^{22} + 181 x^{20} + 13028 x^{18} + 490585 x^{16} + 10635319 x^{14} + 137334967 x^{12} + 1056115843 x^{10} + 4729178714 x^{8} + 11925395238 x^{6} + 15697884460 x^{4} + 8830679464 x^{2} + 939238609 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-39785189666798958828616586618395684610035295457378304=-\,2^{22}\cdot 199^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $245.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 199$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(796=2^{2}\cdot 199\)
Dirichlet character group:    $\lbrace$$\chi_{796}(1,·)$, $\chi_{796}(387,·)$, $\chi_{796}(261,·)$, $\chi_{796}(519,·)$, $\chi_{796}(523,·)$, $\chi_{796}(461,·)$, $\chi_{796}(399,·)$, $\chi_{796}(785,·)$, $\chi_{796}(659,·)$, $\chi_{796}(139,·)$, $\chi_{796}(217,·)$, $\chi_{796}(615,·)$, $\chi_{796}(537,·)$, $\chi_{796}(459,·)$, $\chi_{796}(103,·)$, $\chi_{796}(711,·)$, $\chi_{796}(125,·)$, $\chi_{796}(501,·)$, $\chi_{796}(121,·)$, $\chi_{796}(313,·)$, $\chi_{796}(61,·)$, $\chi_{796}(63,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{3}{19} a^{11} - \frac{7}{19} a^{9} + \frac{8}{19} a^{7} + \frac{5}{19} a^{5} - \frac{1}{19} a^{3} + \frac{5}{19} a$, $\frac{1}{19} a^{14} - \frac{3}{19} a^{12} - \frac{7}{19} a^{10} + \frac{8}{19} a^{8} + \frac{5}{19} a^{6} - \frac{1}{19} a^{4} + \frac{5}{19} a^{2}$, $\frac{1}{19} a^{15} + \frac{3}{19} a^{11} + \frac{6}{19} a^{9} - \frac{9}{19} a^{7} - \frac{5}{19} a^{5} + \frac{2}{19} a^{3} - \frac{4}{19} a$, $\frac{1}{19} a^{16} + \frac{3}{19} a^{12} + \frac{6}{19} a^{10} - \frac{9}{19} a^{8} - \frac{5}{19} a^{6} + \frac{2}{19} a^{4} - \frac{4}{19} a^{2}$, $\frac{1}{19} a^{17} - \frac{4}{19} a^{11} - \frac{7}{19} a^{9} + \frac{9}{19} a^{7} + \frac{6}{19} a^{5} - \frac{1}{19} a^{3} + \frac{4}{19} a$, $\frac{1}{30229} a^{18} - \frac{119}{30229} a^{16} - \frac{72}{30229} a^{14} + \frac{12661}{30229} a^{12} - \frac{6791}{30229} a^{10} + \frac{10308}{30229} a^{8} - \frac{14636}{30229} a^{6} + \frac{9656}{30229} a^{4} - \frac{14548}{30229} a^{2} + \frac{758}{1591}$, $\frac{1}{30229} a^{19} - \frac{119}{30229} a^{17} - \frac{72}{30229} a^{15} - \frac{67}{30229} a^{13} + \frac{1164}{30229} a^{11} + \frac{8717}{30229} a^{9} + \frac{4456}{30229} a^{7} + \frac{6474}{30229} a^{5} - \frac{1820}{30229} a^{3} + \frac{11220}{30229} a$, $\frac{1}{144962718953821828604741512500095363878169} a^{20} + \frac{2001085695908902881294638468326971551}{144962718953821828604741512500095363878169} a^{18} - \frac{1637259994659215226253925073877756066500}{144962718953821828604741512500095363878169} a^{16} + \frac{3239332405892760010937036993538320999121}{144962718953821828604741512500095363878169} a^{14} + \frac{71322171979936849684610822560325154087079}{144962718953821828604741512500095363878169} a^{12} - \frac{5940905981487450297871855035746534210352}{144962718953821828604741512500095363878169} a^{10} + \frac{33169547443406761249090231233629037365138}{144962718953821828604741512500095363878169} a^{8} - \frac{44464924774687716163843582126022532265324}{144962718953821828604741512500095363878169} a^{6} - \frac{64071029431765007204673360039756385613675}{144962718953821828604741512500095363878169} a^{4} - \frac{618254270084504433242928624074215122301}{3917911323076265637965986824326901726437} a^{2} + \frac{1049823113751544042125688378539409854495}{7629616787043254137091658552636598098851}$, $\frac{1}{233824865672514609539448059662653821935486597} a^{21} - \frac{1513372204502499838363811648541833304525}{233824865672514609539448059662653821935486597} a^{19} + \frac{2284466394762889566819211483608032392069420}{233824865672514609539448059662653821935486597} a^{17} - \frac{2367279246488879405174204339948624521249982}{233824865672514609539448059662653821935486597} a^{15} - \frac{5953730097572502836736568873977182380793182}{233824865672514609539448059662653821935486597} a^{13} + \frac{45106530123821318193183974574283685623777728}{233824865672514609539448059662653821935486597} a^{11} + \frac{5482884019910324718232752575024714593117783}{12306571877500768923128845245402832733446663} a^{9} + \frac{105633064667970595897030643234609612862208356}{233824865672514609539448059662653821935486597} a^{7} + \frac{57006623045044902567719987410268884921598167}{233824865672514609539448059662653821935486597} a^{5} - \frac{21397373917249835590584810918721814043732530}{233824865672514609539448059662653821935486597} a^{3} - \frac{9703887262025602293184262201846434924033461}{233824865672514609539448059662653821935486597} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2097569}$, which has order $2097569$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{13767192571160672117825}{62592952517930880991653130526797} a^{21} - \frac{2511116595514434321760975}{62592952517930880991653130526797} a^{19} - \frac{182614766266257589795511039}{62592952517930880991653130526797} a^{17} - \frac{6966325857148435326796818779}{62592952517930880991653130526797} a^{15} - \frac{153382317283888556993186901789}{62592952517930880991653130526797} a^{13} - \frac{2015658623128782336477083919198}{62592952517930880991653130526797} a^{11} - \frac{15799487323603083942147385549458}{62592952517930880991653130526797} a^{9} - \frac{72321732745355854662228243579933}{62592952517930880991653130526797} a^{7} - \frac{5089698488907659019765276910857}{1691701419403537324098733257481} a^{5} - \frac{13969012061773337225175091327504}{3294365921996362157455427922463} a^{3} - \frac{202503777944008737755955457433043}{62592952517930880991653130526797} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 117135822355.96071 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 11.11.97393677359695041798001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}$ $22$ ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ $22$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
199Data not computed