Normalized defining polynomial
\( x^{22} - 8 x^{21} + 58 x^{20} - 396 x^{19} + 2079 x^{18} - 10043 x^{17} + 44781 x^{16} - 172722 x^{15} + 587862 x^{14} - 1807377 x^{13} + 5129410 x^{12} - 13519264 x^{11} + 32472704 x^{10} - 71190955 x^{9} + 143941842 x^{8} - 264596266 x^{7} + 422694019 x^{6} - 543667399 x^{5} + 522042400 x^{4} - 344473206 x^{3} + 174513339 x^{2} - 209238282 x + 197813583 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-385820113812010750478864385892000309956033536=-\,2^{10}\cdot 7^{11}\cdot 11^{18}\cdot 17^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{3}{11} a^{11} + \frac{3}{11} a^{10}$, $\frac{1}{11} a^{13} + \frac{5}{11} a^{11} + \frac{2}{11} a^{10}$, $\frac{1}{11} a^{14} - \frac{2}{11} a^{11} - \frac{4}{11} a^{10}$, $\frac{1}{11} a^{15} + \frac{2}{11} a^{11} - \frac{5}{11} a^{10}$, $\frac{1}{33} a^{16} + \frac{1}{33} a^{15} + \frac{1}{33} a^{12} + \frac{16}{33} a^{11} + \frac{14}{33} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{33} a^{17} - \frac{1}{33} a^{15} + \frac{1}{33} a^{13} - \frac{14}{33} a^{11} + \frac{7}{33} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{33} a^{18} + \frac{1}{33} a^{15} + \frac{1}{33} a^{14} - \frac{1}{33} a^{12} - \frac{7}{33} a^{11} - \frac{5}{33} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{165} a^{19} + \frac{1}{165} a^{16} + \frac{7}{165} a^{15} + \frac{2}{165} a^{13} - \frac{7}{165} a^{12} + \frac{1}{3} a^{11} - \frac{19}{55} a^{10} - \frac{1}{3} a^{9} + \frac{7}{15} a^{8} + \frac{1}{15} a^{7} + \frac{7}{15} a^{6} - \frac{2}{5} a^{5} + \frac{2}{15} a^{4} + \frac{2}{15} a^{3} + \frac{4}{15} a^{2} + \frac{2}{5}$, $\frac{1}{495} a^{20} + \frac{1}{495} a^{19} - \frac{1}{99} a^{18} + \frac{2}{165} a^{17} + \frac{1}{165} a^{16} + \frac{7}{495} a^{15} - \frac{1}{165} a^{14} - \frac{1}{33} a^{13} + \frac{1}{165} a^{12} - \frac{4}{15} a^{11} + \frac{133}{495} a^{10} + \frac{22}{45} a^{9} + \frac{13}{45} a^{8} - \frac{2}{45} a^{7} + \frac{7}{15} a^{6} + \frac{16}{45} a^{5} - \frac{1}{45} a^{4} + \frac{16}{45} a^{3} - \frac{16}{45} a^{2} + \frac{7}{15} a - \frac{1}{5}$, $\frac{1}{26065376228352945822594585948143912919380628966221624735468858617239075580410} a^{21} + \frac{6801452406085420322462525205708086855106664530055735447274915657412119293}{26065376228352945822594585948143912919380628966221624735468858617239075580410} a^{20} - \frac{25754874777690930841366875541458552746484321416449320182075124884356774709}{26065376228352945822594585948143912919380628966221624735468858617239075580410} a^{19} + \frac{1971621130956425493176367082798784202603034768916633389144038148550168029}{263286628569221674975702888365090029488693221881026512479483420376152278590} a^{18} - \frac{158910005607944769315801488065553094160509724753922443231132102217006420}{26328662856922167497570288836509002948869322188102651247948342037615227859} a^{17} + \frac{2753385431881500829701087257121549730126941601732219734050984494040794367}{2369579657122995074781325995285810265398238996929238612315350783385370507310} a^{16} - \frac{7769508657623671926733658532635404692623284315352076430319822157055881796}{394929942853832512463554332547635044233039832821539768719225130564228417885} a^{15} - \frac{13173449946139221583214609954701505942928095926132230068194504044121173226}{394929942853832512463554332547635044233039832821539768719225130564228417885} a^{14} - \frac{1743678212872273230359757679368658902036197915053864614894872423828975246}{43881104761536945829283814727515004914782203646837752079913903396025379765} a^{13} + \frac{638860670061199162127253784114214766177296156244646384821284397763156877}{789859885707665024927108665095270088466079665643079537438450261128456835770} a^{12} - \frac{289302381250611122181008874333676757321455064445223503407578063234193110681}{2369579657122995074781325995285810265398238996929238612315350783385370507310} a^{11} - \frac{79597226866199580611277242920960434520339234305744717483810963401595619333}{473915931424599014956265199057162053079647799385847722463070156677074101462} a^{10} - \frac{1016973240485254913715894871991084442362270114640419134378519053005373758993}{2369579657122995074781325995285810265398238996929238612315350783385370507310} a^{9} - \frac{30930217789689487844972785042422839542957423530247738311248174184535374524}{107708166232863412490060272512991375699919954405874482377970490153880477605} a^{8} + \frac{2078891054558497694937045735801293336023706671894820212878202532122549267}{11967574025873712498895585834776819522213328267319386930885610017097830845} a^{7} - \frac{43143604101249917219440137746345209561497645950640733995724611217851877757}{107708166232863412490060272512991375699919954405874482377970490153880477605} a^{6} - \frac{88038476692444578173113052071300682497114822812760627797383699001369435653}{215416332465726824980120545025982751399839908811748964755940980307760955210} a^{5} - \frac{24001811113788394834414741744542295877729930547001653372188156023446233009}{107708166232863412490060272512991375699919954405874482377970490153880477605} a^{4} + \frac{49638480526286376359344307241540270843775059763826204313245878515586333997}{107708166232863412490060272512991375699919954405874482377970490153880477605} a^{3} - \frac{3471009207439100365952949464610508914786540840634933753989496379281967441}{7180544415524227499337351500866091713327996960391632158531366010258698507} a^{2} + \frac{530963354282426034218514135382250123321931598198687093365412838714800829}{7978382683915808332597057223184546348142218844879591287257073344731887230} a + \frac{3464607270143023332543575015540487618590426681160646428221668604935342533}{7978382683915808332597057223184546348142218844879591287257073344731887230}$
Class group and class number
$C_{10}$, which has order $10$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40528597781300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12100 |
| The 49 conjugacy class representatives for t22n25 |
| Character table for t22n25 is not computed |
Intermediate fields
| \(\Q(\sqrt{-119}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.11.10.1 | $x^{11} - 2$ | $11$ | $1$ | $10$ | $F_{11}$ | $[\ ]_{11}^{10}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.10.5.2 | $x^{10} - 83521 x^{2} + 8519142$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 17.10.5.2 | $x^{10} - 83521 x^{2} + 8519142$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |