Normalized defining polynomial
\( x^{22} - 11 x^{21} + 55 x^{20} - 154 x^{19} + 187 x^{18} + 363 x^{17} - 2255 x^{16} + 5016 x^{15} - 5082 x^{14} - 2046 x^{13} + 13442 x^{12} - 15368 x^{11} + 6358 x^{10} - 33242 x^{9} + 159434 x^{8} - 361944 x^{7} + 546073 x^{6} - 684519 x^{5} + 779031 x^{4} - 754798 x^{3} + 577951 x^{2} - 314545 x + 86485 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-366768227637345227672179097600000000=-\,2^{20}\cdot 5^{8}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{22} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{3}{11}$, $\frac{1}{44} a^{12} - \frac{1}{44} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{5}{44} a + \frac{17}{44}$, $\frac{1}{44} a^{13} - \frac{1}{44} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{17}{44} a^{2} + \frac{17}{44}$, $\frac{1}{44} a^{14} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{3}{22} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{44} a^{15} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{3}{22} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{88} a^{16} - \frac{1}{88} a^{15} - \frac{1}{88} a^{13} + \frac{1}{88} a^{11} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{5}{88} a^{5} - \frac{2}{11} a^{4} - \frac{3}{8} a^{3} - \frac{19}{44} a^{2} - \frac{3}{8} a + \frac{5}{88}$, $\frac{1}{88} a^{17} - \frac{1}{88} a^{15} - \frac{1}{88} a^{14} - \frac{1}{88} a^{13} - \frac{1}{88} a^{12} + \frac{1}{88} a^{11} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{3}{8} a^{7} + \frac{5}{88} a^{6} + \frac{3}{8} a^{5} + \frac{17}{88} a^{4} + \frac{39}{88} a^{3} + \frac{17}{88} a^{2} - \frac{19}{44} a + \frac{27}{88}$, $\frac{1}{88} a^{18} - \frac{1}{88} a^{14} - \frac{1}{88} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{2}{11} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{2}{11} a^{3} - \frac{1}{4} a^{2} - \frac{19}{44} a - \frac{1}{8}$, $\frac{1}{88} a^{19} - \frac{1}{88} a^{15} - \frac{1}{88} a^{13} + \frac{1}{88} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} + \frac{2}{11} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{2}{11} a^{4} - \frac{1}{4} a^{3} - \frac{19}{44} a^{2} + \frac{3}{8} a + \frac{2}{11}$, $\frac{1}{1496} a^{20} - \frac{1}{748} a^{19} + \frac{5}{1496} a^{17} - \frac{3}{748} a^{16} - \frac{3}{374} a^{15} - \frac{2}{187} a^{14} + \frac{3}{374} a^{13} + \frac{1}{374} a^{12} - \frac{3}{748} a^{11} + \frac{13}{68} a^{10} + \frac{35}{187} a^{9} - \frac{26}{187} a^{8} - \frac{5}{34} a^{7} - \frac{167}{374} a^{6} + \frac{163}{374} a^{5} + \frac{23}{88} a^{4} - \frac{21}{187} a^{3} + \frac{63}{748} a^{2} + \frac{603}{1496} a + \frac{205}{748}$, $\frac{1}{581609638563290032302959876216} a^{21} - \frac{49656706592543179684061075}{290804819281645016151479938108} a^{20} + \frac{1208914315014397211201766007}{581609638563290032302959876216} a^{19} + \frac{398783682630531230630444529}{83087091223327147471851410888} a^{18} - \frac{854744944198550978564232319}{290804819281645016151479938108} a^{17} - \frac{1410612895311698612121899235}{581609638563290032302959876216} a^{16} + \frac{953224546408016607028302127}{290804819281645016151479938108} a^{15} + \frac{2320624508078456166889785289}{290804819281645016151479938108} a^{14} + \frac{354651306070444054572240543}{41543545611663573735925705444} a^{13} - \frac{339742629610691034456440896}{72701204820411254037869984527} a^{12} - \frac{1624907185446763187447014717}{72701204820411254037869984527} a^{11} + \frac{9904118718074198491331199172}{72701204820411254037869984527} a^{10} - \frac{28224601385008840466924165697}{145402409640822508075739969054} a^{9} - \frac{992311822860372912029214265}{17106165840096765655969408124} a^{8} - \frac{90078716878677249499044138023}{290804819281645016151479938108} a^{7} + \frac{143522181278614466316515712037}{290804819281645016151479938108} a^{6} - \frac{192805193931676773771144316171}{581609638563290032302959876216} a^{5} + \frac{20254571719992541407672766313}{290804819281645016151479938108} a^{4} + \frac{185522608128046325839891066985}{581609638563290032302959876216} a^{3} + \frac{170854007501456930819294467493}{581609638563290032302959876216} a^{2} + \frac{50257031124118719037594421893}{290804819281645016151479938108} a - \frac{235636588824046863186529}{235374196100076905019409096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3435709897.46 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 13 conjugacy class representatives for t22n14 |
| Character table for t22n14 |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11 | Data not computed | ||||||