Normalized defining polynomial
\( x^{22} + 89 x^{20} + 3026 x^{18} + 51531 x^{16} + 489500 x^{14} + 2690648 x^{12} + 8475025 x^{10} + 14647086 x^{8} + 13328106 x^{6} + 6239345 x^{4} + 1413231 x^{2} + 121841 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-362952710604500716554548260445405852449957216256=-\,2^{22}\cdot 89^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $145.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(356=2^{2}\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{356}(1,·)$, $\chi_{356}(259,·)$, $\chi_{356}(263,·)$, $\chi_{356}(11,·)$, $\chi_{356}(269,·)$, $\chi_{356}(139,·)$, $\chi_{356}(203,·)$, $\chi_{356}(153,·)$, $\chi_{356}(217,·)$, $\chi_{356}(93,·)$, $\chi_{356}(97,·)$, $\chi_{356}(355,·)$, $\chi_{356}(105,·)$, $\chi_{356}(235,·)$, $\chi_{356}(45,·)$, $\chi_{356}(111,·)$, $\chi_{356}(245,·)$, $\chi_{356}(311,·)$, $\chi_{356}(121,·)$, $\chi_{356}(87,·)$, $\chi_{356}(251,·)$, $\chi_{356}(345,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{37} a^{19} - \frac{4}{37} a^{17} - \frac{6}{37} a^{15} - \frac{7}{37} a^{13} + \frac{12}{37} a^{11} + \frac{2}{37} a^{9} - \frac{11}{37} a^{7} - \frac{6}{37} a^{5} + \frac{6}{37} a^{3} - \frac{5}{37} a$, $\frac{1}{565116922512088772825220514609} a^{20} + \frac{60392517874630037224920833430}{565116922512088772825220514609} a^{18} - \frac{114672305366028859437337388496}{565116922512088772825220514609} a^{16} - \frac{212754313462033386859526894341}{565116922512088772825220514609} a^{14} - \frac{1197228430830444224349165404}{5595217054575136364606143709} a^{12} - \frac{226412214882176503970265119967}{565116922512088772825220514609} a^{10} - \frac{195088656544266646913035542788}{565116922512088772825220514609} a^{8} + \frac{105817446868772446636931793063}{565116922512088772825220514609} a^{6} - \frac{186784056702970184277684104820}{565116922512088772825220514609} a^{4} - \frac{128846533052382569398229622575}{565116922512088772825220514609} a^{2} - \frac{3033044518664110085629264282}{15273430338164561427708662557}$, $\frac{1}{565116922512088772825220514609} a^{21} - \frac{701203478028208485913816798}{565116922512088772825220514609} a^{19} + \frac{129702580044604123406001212416}{565116922512088772825220514609} a^{17} + \frac{153808014653916087405481007027}{565116922512088772825220514609} a^{15} - \frac{2558227173835207123847957117}{5595217054575136364606143709} a^{13} + \frac{170696973910102093150160106515}{565116922512088772825220514609} a^{11} + \frac{247840823262505634490515671365}{565116922512088772825220514609} a^{9} + \frac{212731459235924376630892430962}{565116922512088772825220514609} a^{7} + \frac{179778271412979289987323796548}{565116922512088772825220514609} a^{5} + \frac{69708061343756729161982990666}{565116922512088772825220514609} a^{3} + \frac{193245959572719155385890472706}{565116922512088772825220514609} a$
Class group and class number
$C_{230484}$, which has order $230484$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-89}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89 | Data not computed | ||||||