Properties

Label 22.0.35146871425...0000.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,2^{22}\cdot 5^{11}\cdot 23^{20}$
Root discriminant $77.35$
Ramified primes $2, 5, 23$
Class number $374638$ (GRH)
Class group $[374638]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1368706081, -304156912, 1328901156, -276536200, 645715650, -125495212, 206484136, -37307012, 48218481, -8043038, 8641614, -1317110, 1216660, -166994, 135402, -16330, 11785, -1208, 779, -62, 36, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 36*x^20 - 62*x^19 + 779*x^18 - 1208*x^17 + 11785*x^16 - 16330*x^15 + 135402*x^14 - 166994*x^13 + 1216660*x^12 - 1317110*x^11 + 8641614*x^10 - 8043038*x^9 + 48218481*x^8 - 37307012*x^7 + 206484136*x^6 - 125495212*x^5 + 645715650*x^4 - 276536200*x^3 + 1328901156*x^2 - 304156912*x + 1368706081)
 
gp: K = bnfinit(x^22 - 2*x^21 + 36*x^20 - 62*x^19 + 779*x^18 - 1208*x^17 + 11785*x^16 - 16330*x^15 + 135402*x^14 - 166994*x^13 + 1216660*x^12 - 1317110*x^11 + 8641614*x^10 - 8043038*x^9 + 48218481*x^8 - 37307012*x^7 + 206484136*x^6 - 125495212*x^5 + 645715650*x^4 - 276536200*x^3 + 1328901156*x^2 - 304156912*x + 1368706081, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} + 36 x^{20} - 62 x^{19} + 779 x^{18} - 1208 x^{17} + 11785 x^{16} - 16330 x^{15} + 135402 x^{14} - 166994 x^{13} + 1216660 x^{12} - 1317110 x^{11} + 8641614 x^{10} - 8043038 x^{9} + 48218481 x^{8} - 37307012 x^{7} + 206484136 x^{6} - 125495212 x^{5} + 645715650 x^{4} - 276536200 x^{3} + 1328901156 x^{2} - 304156912 x + 1368706081 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-351468714257323283030813737164800000000000=-\,2^{22}\cdot 5^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $77.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(460=2^{2}\cdot 5\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{460}(1,·)$, $\chi_{460}(259,·)$, $\chi_{460}(261,·)$, $\chi_{460}(139,·)$, $\chi_{460}(141,·)$, $\chi_{460}(399,·)$, $\chi_{460}(81,·)$, $\chi_{460}(121,·)$, $\chi_{460}(279,·)$, $\chi_{460}(219,·)$, $\chi_{460}(361,·)$, $\chi_{460}(101,·)$, $\chi_{460}(39,·)$, $\chi_{460}(119,·)$, $\chi_{460}(41,·)$, $\chi_{460}(301,·)$, $\chi_{460}(239,·)$, $\chi_{460}(179,·)$, $\chi_{460}(439,·)$, $\chi_{460}(441,·)$, $\chi_{460}(59,·)$, $\chi_{460}(381,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} + \frac{5}{47} a^{18} + \frac{3}{47} a^{17} + \frac{13}{47} a^{16} + \frac{4}{47} a^{15} + \frac{11}{47} a^{14} - \frac{20}{47} a^{13} + \frac{9}{47} a^{12} + \frac{18}{47} a^{11} - \frac{3}{47} a^{10} + \frac{16}{47} a^{9} - \frac{8}{47} a^{7} + \frac{22}{47} a^{6} - \frac{1}{47} a^{5} - \frac{12}{47} a^{4} - \frac{20}{47} a^{3} + \frac{5}{47} a^{2} - \frac{3}{47} a - \frac{13}{47}$, $\frac{1}{47} a^{20} - \frac{22}{47} a^{18} - \frac{2}{47} a^{17} - \frac{14}{47} a^{16} - \frac{9}{47} a^{15} + \frac{19}{47} a^{14} + \frac{15}{47} a^{13} + \frac{20}{47} a^{12} + \frac{1}{47} a^{11} - \frac{16}{47} a^{10} + \frac{14}{47} a^{9} - \frac{8}{47} a^{8} + \frac{15}{47} a^{7} - \frac{17}{47} a^{6} - \frac{7}{47} a^{5} - \frac{7}{47} a^{4} + \frac{11}{47} a^{3} + \frac{19}{47} a^{2} + \frac{2}{47} a + \frac{18}{47}$, $\frac{1}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{21} - \frac{3971133917411194426979979954135685139411046549509626468379652474950976}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{20} + \frac{5090255405117689755713611914946730683256152744379276253080296344195808}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{19} + \frac{1248241006208431257453449491490075673850879250747885450877362404155678358}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{18} - \frac{551051924389160082779179227485407716061986630485480412236465648926844740}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{17} + \frac{816281095324676253389639717082463639025619409953648998164231774602339315}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{16} - \frac{605412515675865731101638900754777466695750187542569137507302856308325176}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{15} - \frac{171796892232371985476156744791190876243895833904521737350404274985762933}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{14} + \frac{396230866578563015584287190039393003439196951757472741325439697613070778}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{13} - \frac{668446076965952903255604086214775296250013995591853534743896280034901918}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{12} - \frac{1232080757920173607816531302874362689891541825061576716018463030840984435}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{11} - \frac{508325573988273104069204334834709117505549348797369066100064654716171766}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{10} + \frac{491220447465025000404263305998034465619897595998871916145912546023725793}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{9} - \frac{242899949589158050925515186690652259606503437182618419788816196442490705}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{8} + \frac{85160525419446042993052565982625954978487398723630792116405612555921020}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{7} + \frac{449234446591243832086450093777050114155839787015421722793240223233518997}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{6} + \frac{945453211785246244454850262347573769193299367931544661819153103235264080}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{5} - \frac{775782408009472621868982562867609786592751885971653411586291637537155483}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{4} + \frac{549194122930160845533525786042389281044445309158439963528670519543740541}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{3} + \frac{740610956207869364509020155798787650002057016237516697873919890741576566}{2520374299582000455108234351615157322139260762675464516201276876183751821} a^{2} - \frac{1112030377777828615615848896832527047181083936919912091682398440891644847}{2520374299582000455108234351615157322139260762675464516201276876183751821} a - \frac{817315073215622505682145594251758103280208450579260262280124392072207425}{2520374299582000455108234351615157322139260762675464516201276876183751821}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{374638}$, which has order $374638$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ $22$ $22$ $22$ $22$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$