Normalized defining polynomial
\( x^{22} - x^{21} + 32 x^{20} - 25 x^{19} + 490 x^{18} - 308 x^{17} + 4520 x^{16} - 2231 x^{15} + 27309 x^{14} - 10383 x^{13} + 110504 x^{12} - 30697 x^{11} + 297670 x^{10} - 57864 x^{9} + 513224 x^{8} - 60352 x^{7} + 528640 x^{6} - 39424 x^{5} + 280960 x^{4} + 1280 x^{3} + 59904 x^{2} - 6144 x + 2048 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3393400820453274956705986794666660343=-\,7^{11}\cdot 23^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(161=7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{161}(64,·)$, $\chi_{161}(1,·)$, $\chi_{161}(6,·)$, $\chi_{161}(71,·)$, $\chi_{161}(8,·)$, $\chi_{161}(139,·)$, $\chi_{161}(13,·)$, $\chi_{161}(78,·)$, $\chi_{161}(141,·)$, $\chi_{161}(146,·)$, $\chi_{161}(85,·)$, $\chi_{161}(27,·)$, $\chi_{161}(29,·)$, $\chi_{161}(36,·)$, $\chi_{161}(104,·)$, $\chi_{161}(41,·)$, $\chi_{161}(48,·)$, $\chi_{161}(50,·)$, $\chi_{161}(118,·)$, $\chi_{161}(55,·)$, $\chi_{161}(62,·)$, $\chi_{161}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{16} a^{12} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{7}{16} a^{8} - \frac{3}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{15} - \frac{1}{32} a^{13} + \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{2} a^{10} + \frac{9}{32} a^{9} + \frac{13}{32} a^{8} - \frac{15}{32} a^{7} - \frac{1}{32} a^{5} + \frac{7}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{17} - \frac{1}{64} a^{16} - \frac{1}{64} a^{14} + \frac{1}{32} a^{13} - \frac{1}{16} a^{12} + \frac{1}{4} a^{11} - \frac{23}{64} a^{10} + \frac{13}{64} a^{9} + \frac{17}{64} a^{8} + \frac{31}{64} a^{6} - \frac{9}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{128} a^{18} - \frac{1}{128} a^{17} - \frac{1}{128} a^{15} + \frac{1}{64} a^{14} - \frac{1}{32} a^{13} + \frac{1}{8} a^{12} - \frac{23}{128} a^{11} - \frac{51}{128} a^{10} + \frac{17}{128} a^{9} - \frac{1}{2} a^{8} + \frac{31}{128} a^{7} + \frac{23}{64} a^{6} + \frac{1}{16} a^{5} - \frac{1}{8} a^{4}$, $\frac{1}{256} a^{19} - \frac{1}{256} a^{18} - \frac{1}{256} a^{16} + \frac{1}{128} a^{15} - \frac{1}{64} a^{14} + \frac{1}{16} a^{13} - \frac{23}{256} a^{12} - \frac{51}{256} a^{11} + \frac{17}{256} a^{10} - \frac{1}{4} a^{9} + \frac{31}{256} a^{8} + \frac{23}{128} a^{7} - \frac{15}{32} a^{6} - \frac{1}{16} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{512} a^{20} - \frac{1}{512} a^{19} - \frac{1}{512} a^{17} + \frac{1}{256} a^{16} - \frac{1}{128} a^{15} + \frac{1}{32} a^{14} - \frac{23}{512} a^{13} - \frac{51}{512} a^{12} + \frac{17}{512} a^{11} + \frac{3}{8} a^{10} - \frac{225}{512} a^{9} - \frac{105}{256} a^{8} - \frac{15}{64} a^{7} - \frac{1}{32} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4198948279583180568167395694894981940224} a^{21} + \frac{682575004155511121604674000566093311}{4198948279583180568167395694894981940224} a^{20} + \frac{1529010520821239381211552745948909693}{1049737069895795142041848923723745485056} a^{19} - \frac{3385569081459357273490426551713722373}{4198948279583180568167395694894981940224} a^{18} + \frac{13194927402780068075080935034258355185}{2099474139791590284083697847447490970112} a^{17} + \frac{5177477043514911668560003464342742379}{524868534947897571020924461861872742528} a^{16} - \frac{4317292125367848581752216429683073755}{524868534947897571020924461861872742528} a^{15} + \frac{99072824708671230129619904066669268713}{4198948279583180568167395694894981940224} a^{14} + \frac{343457921996397553239957965680987737037}{4198948279583180568167395694894981940224} a^{13} - \frac{249326560402649988377869478261997633051}{4198948279583180568167395694894981940224} a^{12} + \frac{378416152537549155957751158065065476645}{1049737069895795142041848923723745485056} a^{11} + \frac{159392549411834162947338641730336954835}{4198948279583180568167395694894981940224} a^{10} + \frac{974874580542341375681702787267357987175}{2099474139791590284083697847447490970112} a^{9} - \frac{170399137094854449605240286313130625807}{1049737069895795142041848923723745485056} a^{8} - \frac{68063624376158298323356871563984772313}{524868534947897571020924461861872742528} a^{7} - \frac{12103283376931042615236798936912673397}{262434267473948785510462230930936371264} a^{6} - \frac{772023714608635965450956535648597905}{16402141717121799094403889433183523204} a^{5} + \frac{6545150034073904022443744636382211439}{16402141717121799094403889433183523204} a^{4} + \frac{2258446334731245556583412849811160541}{32804283434243598188807778866367046408} a^{3} + \frac{2986699171454319812630971250092200183}{8201070858560899547201944716591761602} a^{2} + \frac{2889021512734964302840225649934734921}{8201070858560899547201944716591761602} a - \frac{1430264706273562298983405762770693249}{4100535429280449773600972358295880801}$
Class group and class number
$C_{737}$, which has order $737$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038656.82438 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |